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.1. INTRODUCTION

1.1 The main purpose of Lhis appendix is to provide a mathematical

description of the Reliability-Centered Maintenance Program.)developed

by United Air Lines and described in [6] and [7]. (*Although a mathe-

matical formulation may not make it any easier to implement this program,

by placing it in a broader context we hope to emphasize the generality

of its underlying principles and encourage their application to complex

systems other than commercial air fleet maintenance operations.

Another purpose of this appendix is to provide a brief but coherent

introduction to those aspects of the theory of probability necessary for

an understanding of the theoretical basis for the Reliability-Centered

Maintenance Program. This account differs appreciably from the presen-

tations usually found in textbouks on reliability theory: standard

treatises concentrate on the functions asbociated with reliability and

on their analytical manipulation. Here we focus on the underlying sets

of items and events and on their mutual relationships. There are two

principal reasons for this difference of approach, a difference which |
is in large measure fundamental to the philosophy underlying Reliability-

Centered Maintenance. _.

The first reason is that collections of operational commercial and

military gas-turbine-engined aircraft are among the most complex systems

evolved by civilization. A single-aircraft consists of tens of thousands
of interrelated parts whose integrated and harmonious operation is neces-

sary for successful completion of the aircraftts mission. These consti-

tuent parts, assemblies, and subsystems exhibit every extreme and inter-

mediate aspect of reliability behavior. For this reason alone--complexity

due to diversity--there can be no hope for a complete analytical descrip-

tion of reliability properties which could form the basis for development

of an optimal maintenance policy. Aircraft, and aircraft systems, consist

of sets of constituent parts--sets having a large number of elements,



sets whose elements are related in complicated ways. Consequently, our

attention must be primarily (although not exclusively) directed to con-

sideration of aircraft and aircraft systems as sets.

The second reason is more subtle. It has been said that the

principal problem facing the designer of a maintenance policy for air-

craft operations is one of information. It would be more accurate to

assert that theproblem is one of lack of information. One of the most

important contributions of the Reliability-Centered Maintenance Program

is its explicit recognition that certain types of'information heretofore

actively sought as a product of maintenance activities are, in principle

,as well as in practice, unobtainable. The twentieth century has iden-

tified uncertainty as a fundamental principle on whose shifting sands

profound and powerful theories have been erected: GSdel's Incomplete-

ness Theorem in mathematical logic and Heigenberg's Uncbrtainty Principle

in quantum physics stimulated rather than stifled progress, the spawn of

the latter inclvding.microelectronics as well as nuclear science. The

Reliability-Centered Maintenanqe Program extends these philosophical

views to reliability engineering by elevatingthe unobtainability of

information to a positive principle. This is a consequence of the fol-

lowing observation: the only.information-bearing events which are of

ultimate significance to the aircraft maintenance policy designer are

fa!lures, and among these the critical failures bear the greatest amount

of information. Thus. the task of the maintenance policy designer is to

minimize informaAon. In most other comparable circumstances failure

information is avidly sought, through prototype testing and sampling

procedures, but those traditional approaches are inapplicable here.

Fleets consist of a relatively small number of aircraft which are in a

continuous state of evolution and modification and which are brought

into operation in a serial rather than simultaneous manner. Hence sample

sizes are generally too small for statistical procedures to carry much

conviction, and for the leading edge of high-time aircraft they are

always too small. In such an environment actuarial procedures are of

relatively little use because the operating lifetime of an aircraft (in

a fixed configuration) is relatively brief. Actwarial analyses provide
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interesting historical information about the effectiveness of zaintenafte

policies and design features, but they cannot be a bae.i for maintenance

policies.

Acquisition of the information most needed by maintenance policy

designers--lnWormation about critical failures--is in principle unaccept-

able and is evidence of failure of the maintenance program. Critical

failures entail potential (in certain cases, probable) loss of life, but

there is no rate of loss of life that is acceptable to a common carrier

or military organization as the price of failure information to be used

for designing a maintenance policy. Thus the policy designer is faced

with the problem of creating a maintenance system for which the expected
lose of life will be less than 1 over the planned operational lifetime

of the aircraft. This means that, both in practice and in priuciple,

the policy muaL be designed without using experiential data whicb will

arise from the failures the policy is meant to avoid.

Maintenance policy designers do have the advantage of experience

gathered from operation of previous generations of aircraft. Although

those aircraft are different, both in the design and fabrication of many

of their constituent parts and in the relationships among those parts,

it is nevertheless true that many constituents are unchanged, and most

changes are minor and evolutionary rather than revolutionary. The-ee is,

consequently, a certain continuity from one generation of aircraft to

the next whIch is utilized in an informal way by experienced maintenance
engineers and aircraft designers. Although it is difficult to formulate
this aspect of policy deuign in mathematical terms, the theoretician

should not be deterred from the task because prior experience is probably

the major single source of information which can be used for maintenance

policy design.

In short, maintenance policy design is a problem -f information and

of statistics. N. Wiener [15] and A. N. Kolmogorov (5] were among the

first to recognize the close relationship between statistics and infor-

mation, particulArly with regard to communication theory. C. Sharnon [111

expanded and devuloped their ideas to create a rigorous and useful jg

formation theory. The application of Shannon's theory to maintenance
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policies requires that both of the concepts of information and reliabil-

ity be formulated in terms of the structure of the sets of constituents

of aircraft, and of functions defined on those sets. Again the dewira-

bility of a set-oriented presentation of reliability is underscored.

J. We will summarize the contents of the subsequent sectiuns. Sec-

tion 2, Elements of Probability, introduces the basic concepts and

relationships employed.-throughout this work,. The notion of a measurable
space, which consists of a set whose elements are the items of interest,

a distinguished collection of subsets called events, and a probability

measure which measures the likelihood of an event, is central. Random

variables are introduced as functions defined on the set of items and

compatible with the structure specified by the collection of events.

The distribution function associated with a random variable and proba-

bility measure is often the starting point in treatments of reliability

theory. This necessitates a brief description of the three possible

types of distribution functions. The remainder of the work is restricted

to distribution functions which are linear combinations of absolutely

continuous distributions (that is, those which ha -' a corresponding

density function) and discrete distributions. The discussion and nota-

tion are arranged in a sufficiently general manner to permit a unified

treatment of both types of distributions as well as combinations of them.

Combined distributions are not merely academic curiosities. Whenever a

system is operated continuously over a period with numerous brief (dis-

crete) intervals of peak stress having special characteristics, its

survival distribution will be a linear combination of an absolutely con-

tinuous distribution corresponding to the continuous mode of operation

and a discrete distribution corresponding to the peak-stress operation.

A tungsten-filament light bulb provides a simple example. When operated

continuously its survival characteristics are re'sced to continuous

filament evaporation. When the controlling switch is first turned "on,"

the cold filament is heated rapidly and undergoes thermal stresses.

These loads evidently depend on the history of the switching activity

and yield a discrete distribution. Similar phenomena occur in aircraft

operation, particularly in hot areas of gas turbine engines.
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These circumstances demand consideration of the Lebesgue-Stieltjes

integral, The latter is not as cowmonly used in the literature as It

should be. We present a brief and, we hope, readily accessible defini-

tion of this integral and description of those properties needed for the

applications. The discussion is based on the integration-by-parts

formula familiar from elmentary calculus.

The derivative of an absolutely continuous distribution is called

a density function. For instance, the normal density function is

1 _jt2
e .Discrete distributions do not have derivatives in the ordi-

nary sense, so it is not possible to unify the treatment of densities of

combined distributions without generalizing the concept of function.

The required generalization is the generalized function known as the

Dirac delta function, long used by engineers.

With these preliminaries in hand, conditional probabilities are

dafined and Bayes' Principle of Inverse Probability is introduced.

Bayes' Principle is a consequence of a certain symmetry of roles played
by observations and hypotheses, a symmetry most readily made evident by

the set-theoretic formulation of these concepts. This symmetry, and

Bayes' Principle, are of special importance to us because they provide

the formal mechanism for the conversion of prior observations, e.g.,

survival data for constituents of a currently obsolete aircraft, into

current hypotheses, e.g., initial specifications for hard-time mainte-

nance. This application of Bayes' Principle is taken up in Section 7.

Section 3, Terminology of Reliability Theory, applies the general

development of the previous section to the particular circumstances of

reiiability probleas. The main features in this application are two:

first, time t is a random variable, and the events are parameteriszed

by t; and second, the event associated vith t is Interpreted as the

set of items which falled prior to t. Failure and survival distribu-

tions are introduced, and it is shown how to calculate the mean time

before failure. Failure density is defined and used to introduce the

Important concept of the hazard rate, also known as the failure rate.

The hazard rate has two useful properties. The survival distribution
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can be expreas-d in terms of the hazard rate, Moreover, the hazard rate

of a collection of independently failing items is the sum of the hazard

rates of the individual items.

Section 4, Uý.eful Survival Distributions, introduces five survival

distributions which appear frequently in the literature: exponential,

normal, 3eibull, lognormal, and gamma. In each case the corresponding

density and hazard functions are displayed. The survival characteristics

of various jet engines or their subsystems are often accurately approxi-I!
mated by one of these distributions. An exauple of such an application

is supplied for each one.

The exponential distribution plays a unique role among survival !

distributions. Since its hazard rate is constant, it separates the dis-

tributions which have increasing hazard rates from those which have de-

creasing hazard rates. Thus it also separates two fundamentally distinct

classes of maintenance policies, since in the former case replacement of

old by new items reduces failure rate and can, under certain circumstances,

be cost-effective, whereas in the latter, replacement of old by new is *

only reasonable after failure.

Section 5, Simple and Complex Systems, considers infant mortality

and wear out as components of the general hazard function. Simple systems,

-onsisting either of one cell or of symmetrically interconnected replicas

of one cell, are contrasted with complex systems. The principal conclu-

sion is that complex systems are not amenable to complete mathematical

reliability analysis.

Section 6, Reliability-Centered Maintenance, is the heart of this

paper. Mathematical reliability analysL6 of an aircraft is impossible

because the latter consists of tens of thousands of diverse parts. The

United Air Lines Reliability-Centered Maintenance Program presents a

method for grouping parts and ajsemblies Into functionally related sub-

system and systems, and for sysatemaically eliminating certain of them

from maintenance policy considerations. The purpose of Section 6 is to

represent this procedure in mathemtical terms.
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The collection of types of items whi..h are part of an aircraft is

considered as a set with an associated survival distribution. This set

is partitioned into maximally independent elements which loosely corre-

spond to the partition described in the Reliability-Centered Maintenance

Program. To each independent element is assigned a cost furction which

includes the direct and indirect estimated costs of a failure in addi-

tion to the costs associated with the maintenance program under consider-

ation. The objective of the maintenance program designer is to minimise

the sum of these cost functions.

Although this minimization problem is too complicated to admit a

purely mathematical solution, it is nevertheless arranged in a form which

makes it possible to recursively and systematically revise the maintenance

policy so that total cost is reduced by each revision cycle. In fact,

since the cost function is the sum of the cost functions associated with

the elements of the maximally independent partition, it follows that any

policy modification which reduces the cost function for one independent

element while leaving the maximally independent partition unchanged must

necessarily reduce the total cost function. Hence, iteration of this

procedure of local cost reduction without chang'.ng the partition will

lead, in the limit, to a local minimum of the total cost function. There

is no way to prove that this local minimum will be the global minimum,

nor is there as yet an analytical way to estimate or speed up the rate

of convergence to the local minimum. Nevertheless, this procedure,

which reflects the essence of the Reliability-Centered Maintenance Pro-

gram, assures the maintenance policy designer that the program is self-

improving.

The section closes with presantation of a geometrical model of the

Reliability-Centered Maintenance Program. The maintenance/failure cost

function, considered as a function of time and the policy parameters,

defines a surface In a multi-dinensional space. The-program defines an

iterative procedure for locating a loeal. minimum (as a function of time)

on this surface.

Section 7, Information and Maintenance Policies, returns to the

theme discassed earlier in this Introduction, that the most important
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information available to the maintenance policy designer is provided by

failure experience. The designer cannot plan on the availability of

such information. Three aspects of this problem are discussed in Sec-

tion 7. First, the geometrical interpretation of the Reliability-Centered

Maintenance Program presented at the and of Section 6 is elaborated in

order to show why that program can succeed using only the small amount of

information which is actually available. In essence, the program seeks

valleys on the multi-dimensional surface defined by the maintenance/

failure cost function. It achieves its objective by identifying a

direction of decreasing cost on the surface at the point corresponding

to the maintenance policy in effect, and then moving along the surface

(i.e., modifying the policy) in that direction. If the distance moved

is sufficiently small, iteration of this process converges to a valley

point on the surface, that is, to a local minimum of the cost/maintenance

function. The central fact is that relatively little information is

needed to determine a direction of decreasing cost.

The difficult problem of optimizing the size of the policy change

at each iteration of the program is discussed next. More information

is needed to assess this 'step' size than to merely identify downward

directions on the surface because the former depends on the magnitude of

the derivatives of the functions defining the surface.

There follows a brief discussion of the applicability of statistical
methods to complex long-lived systems having few replicas.' The physical

universe itself provides one example of such a system. Insofar as

statistical methods are conceived as an analytical apparatus for describ-

ing sample variation, it appears that they cannot be relied on to monitor

or analyze the reliability of complex systems. An alternative view,

based upon Gibbs' concept of a virtual ensemble of systems, is presented.

From this standpoint, statistics emerge as a selection principle which

identifies a system among the virtual ensemble of its alternatives

which are compatible with the non-statistical laws of nature.

Information plays a central role in the Reliability-Centered Mainte-

nance Program and also in the discusstons presented throughout this

appendi, but especially in Sections 5-7. In the final subsection, the
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quantity of information associated with a given survival distribution

and inspection intervals is defined asr' then applied to the determina-

tion of the inspection intervals such tt.t each interval produces the

some amount of information. It I'A fgord, in agreement with expectations,

that extension of replacenwt and/or inspection' intervals is justified

during periods of declining hazard rate.

A Glossary of Notation and Termiology follovs Sectiqp 7.
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2. ELEMENTS OF PROBABILITY

jJ Theories of maintenance and reliability are ultimately based upon
the theory of probability and on the properties of various distribution

funations which ha've been found, either through repeated observation and

experience, or by means, of theoretical analyses, to occur frequently and

play a role in the description and prediction of survival characteristics.

In this section we provide a brief sumary of the concepts and

mathematical structures used in the theory of probability in order to

L introduce the notations and techniques which will be used later, and

also to delimit the range of our subject.

Probability theory is concerned with events and measures of the

likelihood of their occurrence. These commonly used words are given

p recise meaning by introduction of the fundamental concept of a measurable

space. Let denote an arbitrary non-empty set and Qi a collection of

subsets of U such that*

wlf( r) w2)' S1 whenever w, 11SQ and w2 l~ (2.1.2)

UWli4 f whenever wi 4ES1, 1-1,1, 3, (2.1.3)

The elements of Si are called events. Eq. (2.1.1) states that the set

of U (the "universe" of discourse) is an event; the meaning of

eq. (2.1.2) is indicated by Figure 2.1 below, and eq. (2.1.3) asserts

that any sequence of events can be combined to form an event.

*See the Glossary of Notations and Terminology for-definitions of t,
nU. etc.
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Figure 2.1. Illustrating Eq, (2.1.2)

We wish to assign some measure to the probabilitiy of ttdcrrence of an

event. This is achieved by considering a funcdon 1
n2 -a (0,11 (2.2)'

which associates to each event a number between 0 and 1 inclusive such

that

) 1; (2.3.1)

Puw E = (wi) (2.3.2)

whenever the wi are disjoint events, that is, wicQ and i i rw for

i÷j. Such a function P is called a probability measure. In order to

emphasize that a probability measure is a function defined on sets rather

than on numbers, we use bold face type to denote it.

A probability measure is defined on the collection of events Q,

that is, on a collection of certain subsets of U. It is also, important

to be able to consider functions defined on U itself, but not every

such function can be effectively studied by analytical means, so it be-

comes necessary to identify a special family of functions on U which A

can be conveniently and effectively studied.. These aze called rar4m,

variables and are specified as follows. .

Suppose f:U -• IR is a real-valued function (see Figure 2.2).

Each real number x can be used to specify a subset w(x) of • by

putting

tk%(x) {reU: f(r) X. (2.4)

11i
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1 2xI x2 *m •

S•(Xl) [ {G: f( - Xl},

W(x 2 ) - {EEk: f(;) < x21

x1 < x 2  implies w(xl) Cw(x 2 )

Figure 2.2. Schematic Diagram of a Random Variable

The set w(x) may be an event, that is, w(x) may belong to 0. If

w(x) is-an event for every choice .of a real number x, then the functiota

f is called a random variable. The property of being a random variable

depends on the collection of events 9 as well as on the particular

function f.

The concept of integration plays an essential role in probability

and statistics, and henee in the thenry of reliability. A random vari-

able f is called integrable if it can be integrable over the whole

I space M with respect to the probability measure P. TMe integral is

understood in the sense of Lebesgue (cp. [12], [15]). In many practical'

situations this integral Can be expressed in terns of the ordinary Riemann

'Integral and/or a series summation. We will have occasion to say more

about this below.

The integral of a ratdbom variable f ovdr the whole space • with

respect-to the probability toeasure P will be written

f di. (2.5)

'12



From eq. (2.3.1) it follows tbat

fd = (2.6)

If w is an erent, then the function c. defined by

.if t W (2.7)c•(•) = if •;jw

S calledthe indicator function of the event .4', is a random variable, and
S the product of c~f is also a random variable whenever f. is..

-.ib g this product, we define the integral of f over the event
w, by

df dE wfd 
(2.8)

The integral of the random variable f over the whole space U is

called the mean value of f or also the expectation of f, and Will be

denoted by f1

f JdP = fdP (2.9)

The number fdP can be thought of as the mean value of f on the

event w.

The variance of the random variable f (which is also the square of

the standard deviation o(f) of f) Is defined by
A

OMf2 (2.10)

that is
, (f 2,= f ?)2dp (2.11) .

Notation is somewhat abused in this equation; thenu._ber . (the rean

value of the random variable f) is used to stand for the randomvariable

"Afs. where • is the rapdom variable which takes. on the value 1 for

each element. CEk.

~ I 13
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L.& In probabil.ty and statistics one is most often interested in the

probability measure of the set of those events for which a random vari-

able f satisfies f(M) 4 x for all CEw, where x is some real. number.,-

Since f is a random variable, wf(x) - { V: f(t) 4 x1 is an event, io

by definiticn

Pf(x) d (2.12)

is a fuoction of x which varies from 0 to 1. If the random variable

f is fixed for the discussion, or otherwise understood, then the sub-,

script f wil\. be omitted and we will write P(x) in place of Pf(x).

This function x -) P(x) is called the distribution function of the random

variable f; it is the distribution function customarily used in statis-

tics. In order to emphasize that P is a function of a numerical vari-

able rather than a set function it is printed in ordinary Roman type.

A distribution function has the following properties:

x + P(x) is a non-decreasing function; (2.13.1)

P(x) P(x+O) , (2.13.2)

where P(x+O) - lim P(x+h) (h approaches 0
h,. 0

through positive values; thus P is continuous

from the right);

P(--) = 0, P(+-) -1 , (2.13.3)

where P(±-) = lim P(x)

We started with a collection n of sets called events and associated a

probability mearure E with these sets. The values assumed by _ are

real numbers in the interval [0,1]. Then we defined random variables

and their associated integrals relative to the probability measure. By

means of the latter we have been able to construct an interplay betwean

functions defined on. sets, such as probability measures and random

14S' ... " . , . .• .. . . . . • , . . .-, ' .. ..L .;,• •



variables, and functions defined on real numbers. The distribution
function Pf: fl [0,1] provides a method for completing this transfer-

ence by defining a measure on sets of real numbers which will correspond

to t and thereby enable us to express all of the integrals which occur

in terms of integrals of functions of real numbers, rather than as inte-

grals of functions of sets. This is import'.nt because the analysis of

functions of real numbers is highly developed and well known. This nice

property is achieved by defining a measure on IR associated with the

distribution function Pf in the following way.

If (a,b] - {xEIR: a< xs b}, then define the measure

I%((a,b]) - P(b) - P(a) , (2.14)

where P - Pf is the distribution function of the random variable f.

Since P(x) - Pf(x) is the probability that the random variable f

assumes a value sx, it follows that pp((a,b]) is the probability that

f assumes a value in the half-open interval (a,b]. Uip is a measure on

the real line. The integral of a real-valued function g: IR-IR with

respect to this measure is called the Lebesgue-Stielties integral of g

with respect to pp, written

- g(x)dPf(x) . (2.15)

Use of the Lebesgue-Stieltjes integral unifies the treatment of

discrete probability distributions and probability distributions which

have density functions. Nevertheless, the Lebesgue-Stieltjes integral

has not yet become a standard part of the education of those who use

statistics nor an explicitly uced tool in most reference books. This is

no doubt due to' the greater technical complications of developing the

properties of this integral in the most general setting (cp., e.g. [12]).

Fortunately, for the cases of interest to us, there -is a stmple way to
Sexpress the Lebesgue-Stieltjes integral in terms of ordinary integrals

and to obtain the properties of the former from the well-known properties

of the latter. After some preparatory remarks we will introduce this

15



approach, which will enable us to simplify and unify our discussion of

reliability.

A distribution function P of a random variable can always be ex-

pressed as a convex sum of distribution functions of three types:

P - a Pabs + 2Pdi + a3 Psin (2.16)

where 0 1 aI s 1 and al+a2+a3  1 i. pabs is called the absolutely

continuous part of p, Pdis is the discrete part of P, and psing js

the singular part of P. The absolutely continuous part pabs can be

differentiated with respect to x (therefore pabs is a continuous func-

tion), so we can write

( dpas = dabs

dP d dx . (2.17)
dx

jf p = pabs that is, if the distribution function of tho random vari-

able f is absolutely continuous, then

dP dp dxdP

and the function

I- dP (that is, equal by definition) (2.18)P) def d-x

is called the (probability) density function of the random variable f.

The usual continuous distribution functions which appear in statistics

text books are absolutely continuous and therefore possess density

functions. The latter are usually the main topic of study rather than.

the more general but more complicated distribution functions.

The discrete part pdis 'of thq general distribution 'function P

is a step function with at most a countable humber of discontinuities.
hat is, if the discontinuities of pdis occur at the numbers xk,

k - ...- 2,-1,O,1,2 .... , then there are non-negative constants ;bk such

that
pdis(x) bk if Xk5x< xk+ • (.2.19).

where Oi bk<s 1. -

S16
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Figure 2.3 gives an example of such a function.

Y y pdkSlx)

S- - I k - bk.1 dfk

- - I
! I

0 x X
Xk-1 xk

Figure 2.3. A Discrete Probability Distribution

Notice that sufficieicly far to the left in the figure, pdis(x) - 0, and

sufficiently far to the ribht, PdiS(x) 1; this will occur if t:e number

of discontinuities is finite. Otherwise, in accordance with eq. (2.13.3),
pdis need only approach 0 (respectively, 1) in the limit as x+-®

(respectively, x-*+o ). In the figure the notation &-n-- means that the

left-hand endpoint of the interval is included, whereas the right-hand

endpoint is omitted. This means that pdis is continuous from the

right, and is the graphical interpretation of eq. (2.13.2) for pdis.

The quantity

ck dek - bk - P (xk) - lim P (x) (2.20)
d e f x lpx k '

is the "jump" of the function pdis for the discontinuity at x ' xk4

The third part of the general distribution function, the singular
Spsing is of no practical importance. It is a function that is

continuous everywhere and has a derivative equal to zero everywhere ex-

cept on some event (subset) whose probability measure is 0. It is a

remarkable fact that singular distribution functions exist. Such a

function pSing is non-decreasing; Psing(_) = 0; and Psing(+co) 1 ,

Z 17
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which shows that PuSin(x) actually increases as x increases; since

its derivative is 0 almost everywhere, Psng is constant almost every-

where. But it is also ccntinuous; there are no "Jumps." Although func-

tions having these unusual properties can be constructed (cp. [15]),

they are so complicated and pathological that they cannot play a role

in practical applications of probability theory. Therefore singular

distributions will be excluded from consideration in what follows:

hereafter, a probability distribution will consist of a linear combina-
tion of an absolutely continuous probability distribution and a discrete

probability distribution.

LJ3 We are now prepared to express the Lebesgue-Stieltjes integral

fg(x)dP of a function g relative to such a probability distribution

in familiar terms. The "integration by parts" formula

gdP g(x)P(x) - Pg (2.21)

is valid for the Lebesgue-Stieltjes integral [12]. We will use it to

define that integral in terms of the familiar integral for functions g

which are differentiable. Thus, If dg/dx exists, define

J gdP g(x)P(x) - P(x) -dx . (2.22)

The integral' on the right side is a conventional (Lebesgue or Riemann)

integral. All tie properties of the Lebesgue-StieltjeF integral can be

obtained by interpreting the left side of eq. (2.22) in terms of the

right side.

dlsIn particular. if P P Is the discrete distribution given by

eq. (2.19) and if -ll >.r' XN x <N thenN- N ~l

/ gdPdls = Ckg(xk) , (2.23)

18 "
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where ck is the jump of Pdis at the discontinuity xk. Thin formula

is verified by a simple calculation using eq.. (2.22). Indeed, since

P(O) bN and P(m) - bM_1, by eq. (2.19),

,,gdP - g(x)P(x)~ 1 P (x) -dAdx

= bNg( 8 ) - big(a) - f P(x) dx • (2.24)

The last integral can be expressed as a sum of three parts (cp. Fig-

ure 2.4):

P(x)A dx + .M(2.25)

Since pdis is constant between successive discontinuities,

JMP-Odx -b 11 gx)-gc) (2.26.1)

a

AA dx N( g(x (2.26.2)f xN dx N= (0 N))

XM-1 aX xNJ xN 0

XM..1 M

fa
a f

xN

Figure 2.4. Calculation of Lebesgue-Stielties Integrals
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Xk1

d k'+ dx

N-1"1 bk(g(Xk+l )- g(xk)) (2.26.3)

k-M

Substitution of eq. (2.26) in eq. (2.24) yields

fJgdP - b~gB - b,_lg(csN bMij g(xM) -~ a

Ng kBM

N-I
b ~~)- g(x) b k b(g(xk+l) -g(Xk)

N kk

- bCkg(Xk)

k-H'

N-

k- kH+

wherelcabk -tbkejump of sdis at xk Thus the Lebeslue-

I ~ Stielties integral with respect to a di.screte distribution reduces to

the sua seres um.This means that both absolutely continuous •nd

discrete distributions can be treated simultaneouslyand in a uniform

manner.*

Mixed distributions, that is, distributions which have both an

absolutely continuous and a discrete component, are not uncoummon. For ~

Nq

instance, the failure distribution for light bulbs is of .this type.

(b - b 20
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Another example, more closely related to the mtaii, theme of this work, is

I:.rovided by jet aircraft engint-:. In particular, the failure distribu-

tion of turbine blades can be considered as a combined distribution.

The absolutely continuous part is associated wtih failures which occur

as a function of operating time or wear, and the discrete part is asso-

ciated with the periodic stresses due to rapid temperature changes which

occur in the blades during take-off operations.

Although a discrete distribution does not have a density function,

there is the useful notion of a generalized density function which makes

it possible to study densities of combined distribution functions in a

unified way. We will use this concept in Section I and again in Sec-

Zion 6, but this is the logical place to introduce it.

Let 6(x) denote the Dirac delta function, a generalized function

characterized by the property that if ai< x0< and g(x) is a function,

then

f g(x)6(x-xo)dx = g(xo) (2.27)

dieif ck denotes the "Jump" in P (x) at the discontinuity x - Xk,

then
N

9~x) CkI (x-xk)dx -(x)6(X-xk)dx

k k-M

N

A ckg(xk) ; (2.28)

k-M

hence, by eq. (2.23),

ddis
fgdP (x) c 6 (x-xk)dx (2.29)

f-o f k k

so

d dpds

di = def c k6 (-xk) (2.30)
k k

21



can be thought of as the generalized density function corresponding to

the discrete di3tribucion pdis. This extension of the notation of

density function makes it possible to study densities of combinatiorls

of absolutely continuous and discrete distributions in a uniform way.

2.4 The notion of independence of random variables will be of special

importance in what follows because it will provide the means for reducing

complex problems to tractable components. If Ui, i-l,2,... is a se-

quence of sets, Qi a collection of events on i, i a probability

measure on Ri, and fi a random variable on Ui, then the products

U U X_ 2 U X. (2.31.1)

S1 ml × 2 x Q .. , (2.31.2)

_P P1 X P2 X ' (2.31.3)J

define a collection of events Q on U and an associated probability

measure P. Notice that P is merely a probability measure on sets and

does not have anything to do with a particular random variable. The

random variable fi defined on Ui can also be considered as a random

variable on the product set U by defining

fi(l'• 2r"'' ' (2.32)

If f is a random variable on U such that its distribution function

Pf is the product of the distribution functions Pfl of the random

variable fi on U, that is, if

P (Cl P2 ' (F. 1 f (')Pf2(C2). . , (2.33)

then thd f, are said to be independent random variables. If fl,f2 ...

are independent random variables, then the mean of f-flf 2 ... is given

by (cp. eq. (2.9))

f 1 (flf 2.. - dP P f( 1) fl P2() ...

1 f2 (2.34)
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that is,- the mean value of a product of independent random variables is

the product of their mean values.

2.5 In the theory of reliability and maintenance the notion of the

conditional probability of survival plays a central role. If w1 and w2

are two events and if P(wI)> 0, that is, the probability of event wI

is positive, then the conditional probability of w2 Aiven w1 is

P(W 2 /Wl) =def P(wl) (2.35)2 1 def P(W)

If aireas of sets are used to represent 'probabilities, then, in Figure
2.5, P(w 2 /i 1 I) can be interpreted as the ratio of the area of the region

w2()wl to the area of the region wi.

I.I

= 2  )

Figure 2.5. Conditional Probability i

Related to this interpretation of conditional probability is the
important _.1,es' Principle of Inverse Probability. Suppose that

W__

(01, (12, (3 are three events in U which have a non-empty intersection.

vie situatin is depicte~d In Figure 2.6.

23
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I.

I " Area (W• ý 2nO w1 2 3)

J - Area (w1 n• 2 )

K - Area ( 3r
2 3°

IW2

FK

Figure 2.6. Bayes'. Principle

Continuing to interpret the probability of an. event w as the "area"

of the set w in t". -' figure, let

I = Area (w•]w 2 Ow 3 ) = P(wlw 2 Ow 3 ) ,

J -Area (w1iw 2) - P(nI0w2)

K- Area (w2w3) -P(w 2 Ow3 )

The numerical ratio I/(J.K) cau be expressed in two different ways:

I/(J. K)- (I/J)/K =(I/K)/J ,(2.36)•

that is,

-(W w ( fl2 3)/9(Win 2) - P(W 3 Irw 2)/VW(2 rw 3) -

or equivalently,

=W(n 31' 1 2 1 2 (2.372)

_(wI•w2 W3 ) : •(W2 nw 3 ) (2.37)
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In order to interpret eq. (2.36) in a manner appropriate for our

later needs, we will discuss two types of events: observations and

hypotheses. Statistical inference generally proceeds from a collection

of hypotheses, whose probabilities are assumed known, to assessments or

predictions of the probability of various observations. This procedure

can be inverted to provide assessments of the probability of various

hypotheses when a collection of observations is given. Adopting the

latter viewpoint, let {wi: ieJI be a fixed collection of hypotheses

and set

W W )w 1 ,(27.38)itJ

hypotheses wi. Let H denote another hypothesis and a an observa-

tion. Then.eq. (2.37) can be rewritten, using this notation, as

P(oy Hn.,)P(Hnw)
P(HI° •) n P(co =) (2.39).

The quantity P(Poa nf) is called the likelihood ratio for the

hypothesis H given the observation a and the fixed collection of

hypotheses {wi : i c . The likelihood ratio is proportional to the

probability of the observation given the hypothesis H (and w) multi-

plied by the a priori probability of H (and w). The factor of propor-

tionality is independent of the collection of alternative hypotheses H

under consideration. Therefore, it is reasonable to select that H

from among a collection of alternative hypotheses for which the product

P(oIHflwc)P(Hnfd), and hence the likelihood ratio T(HIoAw), is maximal.

This is Bayes' Principle. It'can be considered as a generalization of

the well-known Maximum-Likellhood method of estimation of parameters

[41, [131. In the latter, the event H is a set of values of the

parameters of a probability distributioni w - HUci, and a is, the event

which consists of independent observations xlx 2,...,Xn of a randomi

variable x. If it is assumed that P(H) is independent of H, then

L the likelihood ratio is proportional to

25.
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t(aJH) - f P(xjiH) , (2.40)

V where the right-hand side uses a suggestive if not quite exact notation.

The right-hand side is called the likelihood function. Bayes' Principle

applied to this special case is the Maximum-Likelihood method.

Notice that Bayes' Principle is a consequence of the symmetry in-

herent in the definition of conditional probability (as exhibited in,

eq. (2.36) and the triple intersection displayed in Figure 2.6), and the

symmetrical interpretation of hypotheses and observations as events.

Thus there is a certain degree of interchangeability of-hypotheses and

observations. Hypotheses.which remain unchallenged by observations

assume, as experience accumulates, the role and properties of observa-

tions themselves, and observations (considered as events) can be con- A

verted to hypotheses in the right circumstances.

This interchangeability, or substitutability, plays an unheralded

but substantial role in the practical analysis of the reliability of
rapidly evolving complex systems, for which only small sample observa-

tions can ever be available. Modern commercial and military aircraft

provide an example. The relativeiy small production runs and the very

small number of aircraft of any oae type which reach high operating

times preclude the possibility of collecting extensive actuarial data

for the assessment of.hypotheses concerning reliability. This difficulty

is mitigated to some extent by making hypotheses (concerned, e.g., with

Hard Time maintenance $ntervals) based upon prior experience with simi-

lar although by no means identical equipment. In this way prior limited

observational experience is transformed into current working hypotheses I
against which current observations, limited though they may be, are

tested. In turn, these observations form the foundation for, and in the

sense described aboves are equivalent to, future hypotheses. Although.

this application of Bayes' Principle is rarely made explicit and quan-

titative - one speaks instead of the need for "experienced" reliability

analysts - it nevertheless plays a major role in the practical analysis

of complex systems which evolve witli time, have a relatively brief life,

and of which only a small number of replicas are.fabricated.
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-1. TERMINOLOGY OF RELIABILITY THEORY

STil basic eoncept in reliability theory is that of the probability

~f f4ilure. o~r, if one pre~ers a more sanguine outlook, the proail ityof

survival, fteqtiently called the reliability. For this application w~e may

think of the set. U as a universe of items or components r. whose

failure characteristics are of interest to us.. The subsets of UI which
constitute events consist of those. CU which have failed prior to a
given time. Thus, if t denotes tie te the collection Q of events

consists of the subsets

W(t) ={iE.U: E has failed prior to t}

={W (t): tG IR)

Recall that IR denotes the set of all real numbers. It is evident that

t1 < t2  implies w~l wt)sneec item which failed prior to -.1

certainly failed prior to t2. This is illustrated in Figure 3.1, which

istesame a'iue22atogithas a different interpretation.

Ithsway the collection of events (9 is parametrized by the real-

valued time variable.

tl " 2

27

it 4 I L. IJ4.IJ~t. ,aI.Ita IIL LI .. . . - if I------------------~...



I"

Associated with the universe U of items and the collection Q of

events is a probability measure F which expresses the probability of

failure corresponding to events w nf (We may think of F(w(t)) as the

"area" occupied by the event w(t) if we interpret probabilities as

areas (e.g., in Figure 3.1) and recall that the total "area" of U

itself, considered as an event in Q, must be equal to 1). With this
interpretation, 1(w(t)) is the probability of failure prior to time t;

the probability of survival associated with the event .w - w(t) is

!(w(t)) - 1 - =F((t)) (3.2)

so R(w(t)) is the probability of survival until time t, also called

the reliability. R(w(t)) can be interpreted as the "area" of U - w(t).

If U consists of N items, if the number of items in w(t) is

N(t), anxd if the measure F is counting measure, then, since N(t) is

the number of items which failed prior to t,

N(t)
F(w(t)) - N " (3.3)

In order to transfer the above notions from the realm of sets to

the realm of numbers, where the methods of calculus can be applied, we

use the indicator function defined by eq. (2.7) to obtain a failure

distribution function. Recall that

1 1 if tfw(t)
c0(t) 0 if Ud'(t) (3.4)

The function which assigns to each event w the number 1 is a random

variable. The corresponding .listribution function associated with the

failure probability measure F is, by eq. (2.12),.

F(t)- dz =f (t)d ) (3.5)
WI

Thus the failure distribtpon F(t). i`•wrl# the probability measure

Sconsidered as a function of the'time parameter t.
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We can calculate the survival distribution R(t) in a similar way,

-but it is easier to use eq. (3.2) directly to obtain

R(t) -1 -F(t) •(3.6)

Notice that F really is a probability distribution in the sense speci-

fied by Eq. (2.13), but that R(t) has slightly different properties:

R(t) is non-increasing; (3.7.1)

SR(t) R(t+O) ; (3.7.2)

R(-c) - 1 R(+-) =0 ; (3.7.3)

each of these properties follows immediately from the defining relation

eq. (3.6).and the corresponding eq. (2.13). R(t) will.be referred to

as a survival distribution even though it is not a distribution in the

technical sense.

The graph of the function t *R(t) is called a survival curve.

Figure 4.2 of Section 4 exhibits a typical survival curve for tn aircraft

gaE turbine engine.

In practice, measurements and observations are always discrete and

finite in number. This means that actual worldly knowledge of survival

and other probability distributions only supplies an approximation

which (may be exact and) is a discrete distribution. On the other hand,

theory and philosophical beliefs about the nature of reality often suggest

that Observations are discrete sets of values drawn from absolutely

continuus distributions or from combinations of absolutely continuous

and discrete distributions; moreover, the techniques of mathematical
ýanalyses are more highly developed for studying absolutely coatinuous

distributions. Consequently, whenever it is possible to do so, it is

desirable to suppose that observations have been drawn froth ideal and

hypothetical absolutely continuous distributions. The density functions

corresponding to these distributions play a central role in most develop-

ments of the subject. The absolutely continuous distributions which have

btin found to be most-useful in pfactiee and ate most extensively studieo

by theorists will be introduced in Section 4.
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The generalized density function corresponding to the failure

distribution F(t) - Ff(t) (which may consist of both an absolutely

continuous part and a discrete part) is denoted p(t); that is

p d") (3.8)tý

is the failure probability, density. Equation (2.30) must be used to

express the generalized density function for the discrete part of F.

From Eq. (3.6) we see that the survival probability density is given by.

dR
S=p(t) (3.9)

Corresponding to survival and failure distributions are conditional

survival and conditional failure distributions. First consider the

conditional probability of survival. According to eq. (2.35), the

conditional probability of the event w 2 given wl is'

R(2wI)
w2IRl) I) (3.10)

I distributions parametrized by survival time we consider two times,
t! t 2 . Then the definition of w(t), eq. (3.1), implies w(t) Cw(t 2 )

so the complementary events satisfy the reverse inclusion, i.e.,

- w(tl) D U - w(t2)

The formula R(t) - 1 - F(t) implies that R(t) a R(U - w(t)). Introduce

w1 - U - wl(t), w2 -U " w2 (t). Then w2 Cwl:' items in w2 have

survi-ed at least until t 2 whereas items in wl have survived at least.

until t1  (cp. Figure 3.2). Now we can compute the conditional proba-

bility that an item will survive at least until t 2  given that it has

survived until tI, where tl< t 2 . From eq. (3.10), this is

YI
30.
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W2 U-W(t2)

W(tI) CW(t 2 )

W4t1) .

Figure 3.2. Conditional Probability of Survival

R(t 2 1ti) wR(w2  Iw ) (3.11)

R(N 2 )

= R(•I1 ) since w2 CwI,

R(t 2 )

R(tz)

We are to understand that tl, and hence the condition w(tl), is

held fixed and only t 2 varies (through values greater than tl). The
expression eq. (3.11) for the conditional probability amounts to theIJ
same as the assumption that the universe of items has been reduced from
U to wl (cp. Figure 3.2), and that the probabilities have been re-

normalized by division by R(wl) so that the total measure of w1  is
adjusted to equal- 1.

The conditional survival density is therefore obtained by differ-
entiating the numerator of eq. (3.11) at t 2 = t, which yields

dR(t~t.1) e._.

dt R(tl)
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The conditional probability of failure must be treated slightly
differently since in order to fail during the interval (t 1 , t 2 ), an item

must first have survived until tl. Therefore, the coditional probabili•

of failure prior to t2 given survival until t 1 A1s

F(t2) - F(t 1 ) F(t 2 ) -. 1(t1)
F(t 2 1tl) - (3.'13

I - F(t1) R(tl) (13

the corresponding density at t 2 - t 1 - t is usually called the hazard

rate (also often the failure rate) and is expressed by

n~t) - (3.14)
"R(t)I

By utilizing eq. (3.9) the hazard rate can be expressed in terms of the

survival distribution as

n(t) - -t) logeR(t)=R(t) " -'

(where loge denotes the natural logarithm function), and the survival

distribution is given irn terms of the hazard rate by

_ t

(where exp x = eX). Formulas (3.15) and (3.16) are valid for absolutely

continuous survival distributions. For discrete distributions eq. '(3.15)

must be replaced by the corresponding finite-difference formulation.

Suppose that an item consists of various parts, and survives only

if all of its parts survive. If the survival distribution of the item

is R(t) and that of the kth part is Rk(t), and if failure of the

various parts is due to independent causes, then

R(t) = Rk(t) . (3.17)
k
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In this case the hazard rate is

d
rit= - - (8logeJ7Rk(t))

that is

n (t) - k(t) (3.18)

where

nk(t) --1 logeRk(t) (3.19)

is the hazard rate of the k&.h part. Thus, the hazard rate is additive

for independent causes of failure. This result is valid for discrete as

well as absolutely continuous survival distributions. This convenient

property permits independent assessment of constituent hazard rates and

provides a simple method for combining them, by means of eqs. (3.18) and

(3.16), to recover R(t) itself.

3a If R is a survival distribution, then the area under the graph of

t 'R(t) is the mean lifetime of the items Cc U. In order to adapt our

notation to items which begin life at t- 0, let us suppose that R is

defined on [0, -) and that R(0) - 1, limtR(t) = 0. The area under the

graph is f,,OR(t)dt. Integration by parts yields

Jr'(t)dt -tR(t) d00 1

ftdR "ftdR

*10
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since lim tR(t) = 0 by hypothesis and R varies from 1 to 0 as t

varies from 0 to o . Now recall from eq, (2.9) that

ftdR f tdR -

the mean value of the random variable t, thus the mean time before

failure. Graphically this result amounts to nothing more thaa evaluating

the area under the graph of t -R(t) by integrating along the R-axis

as indicated in Figure 3.3.

R

1y R(t)

dR

t

01

Figure 3.3. Calculation of Mean Time Before Failure
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4. USEFUL SURVIVAL DISTRIBUTIONS

The probability-of-survival distributions 4ost commonly used in the

practical analysis of reliability data are also among those distributions

which have been most intensively studied by theoreticians. They are the

1) Exponential,

2) Normal (also called Gaussian),

and 3) Weibull

distributions. In addition, the

4) Lognormal

and 5) Gamma

distributions have played significant roles. We will define each of

these and derive the corresponding density and hazard functions. Since

all of these distributions are absolutely continuous, the usual techniques

of che calculus can be employed.

It will be assumed hereafter that a survival distribution is defined

on some closed half-infinite interval, which will generally be

0<t<' t

4.1 Hxponeutpt/il, Sturyviyvl DiJkstrlbtt
For this distribution the probability of survival to time t Is

R(t) =exp(-\t), \N 0, t -O . (4.1)

Observe that R(t) = R(,,,) 0 implies 0. Figure 4.1 lllus-

t rates the graph of a typical exponential distribution.

Trh vxponent al survival dens L\v corresponding to eq. (4.1) Is

p(t) = - = \exp (-Xt) , (4.2)
(It
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R(t) - exp(-2t)

L

pP.Oit) "- Xp-X

pWt X o xp(-Xt)

"p(t)

Fig. 4.1.2

t

Figure 4.1. Exponential Survival Distribution', Density,
and Hazard Rate
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and the hazard rate is

d jogeR(t)
dt X

cp Figures 4.1.2 and 4.1.3.

Figure 4.2 displays survival data for the J65-W-3 jet engine, Semi-

logarithmic graph paper is used so that the± graph of an exponential

distribution appears as a straight line. In this example the data points

lie close to the line shown: the underlying distribution can be accurately

approximated by an exponential. Were the exponential of the form eq.

(4.1), then we would find R(O) - 1, but, the data indicates that at

t = 0 (that is, upon initial operation) approyimately 6% of the items

were found to be in a fýiled condition. The variety of potential mean-

ings and definitions of the term "failed condition" have been explored

A
at length earlier in this volume. Regardless of the precise meaning

attributed to the term, the phenomenon can be intevpreted as reflecting

manufacturing defects which have escaped test procedures as well as

failures induced by pre-operational tests or aspects of the production

process itself which are not detectable (or at least not detected) until

initial operation is attempted at t = 0. This phenomhenon is accommodated

in the mathematical formalism by the simple expedient of replacing the

time variable t by t + to, vhere to can be thought of as correspond-

ing to the duration of pre-operational exposure .of the item. This problem

is not confined to exponentially failing items; ii. is found for all types

of distributions. The solution is always the same: renormalization of J

the zero time by replacement of t by t + to for an appropriate

positive t 0 . Thus the renormalization exponential distribution (also

call(d "shifted exponential distribution) is

R(t) exp(-X (t+to)) " (4.4)

with cnrresponding density

p(t) -A exp(-A (t+to)) (4.5)
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Aircraft Engine (Propulsion Unit) Failure Rates, Actuarial Engine
Life, and Formcasting Monthly Engine Changes by the Actuarial
Method, Technical Order, TO 00-25-128. October 20, 1959.

Figure 4. 2. 'rvpica I Exponential Survival l)Ditr iht ion:
.. 65-W-3 Jetf Il,:gin, (i•emI-i.ogpr~Lthmic, .1rapih

paper)
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and hazard rate

n(t) = x •(4.6)

Note the important fact that the hazard rate is independent of tO.
0*I

The exponential distribution plays a special role in the theory of

reliability for two quite different reasons. The first is a practical

one: it has been found that an exponential distribution characterizes

the life history of a variety of equipment types, generally including

electronic devices and complex equipment. The second reason is a

theoretical one, and in some respects it is the more basic. Because it

has a constant hazard rate, the exponential distribution separates the

survival distributions which have an increasing hazard rate from those r

which have a decreasing hazard rate, and it therefore alsc separates two

completely different types of maintenance policies.

It is clear that if an item has a non-increasing hazard rate, then
there is no advantage gained in replacing that item by a new one at any

time prior to its failure. Indeed, if the hazard rate is strictly

decreasing with time, then replacement substitutes an item with a greater

p~obabilitv of failure for the one already in operation. If, however,

the hazard rate is strictly increasing, then replacement of the item by

a new one will increase the probability of survival. In this case the

main issue is the cost of replacement maintenance, and a principal

mathematical problem is to determine replacement intervals which are
optimal with respect to some mix of acceptable failure rate and mainte-

nance cost. The exponential distribution separates these fundamentally A

different classes of survivol distributions and maintenance policies.

Vhis is specially fortunate because the exponential distribution has

particularly simple mathematical properties which often make it possible,

to carry out technical analyses in complete and rigorous detail, thereby

obiaining lower or upper bounds for the properties of general non--

decreasing or non-incrvasing sur\,Ival distributions. This is one main

reason why a large portion of the reliability. theory literature is de-

voted to the study of systems ,vhose constituents have exponential distri-

but ions. 39





rnndecreasing, then R(t) can be bounded by an exponential distribu~tion,
.whose parameter (-hazard rate) can be realistically estimated.,

La ma SuWiaWItib~

This distribution is als4.. frequently encountered in applications.

* If the mean of the normal distribution is positive and laFge fri comparison

with the standard deviation, then truncation by ýrestritcting its domnain to,

-he set of non-negative t will not result in practical difficulties.

Otherwise, the truncated distribution must be normalized to ensure that

R(O) 1. To do this, define

A]f exp~~I du (4.13)

Then the truncated tiorin~l survivjldjsjribution. is (414

where t~ and a* are, respec tiv'ely, the mean and standard d ev4.ation

of the untruncated norwnal diSiribution. The associaited-trunc~ated,--normalA

survival density function is

and he Ž.ze :~: e:; ~ t* 2, -(4.15)

tha th 
(t -lt*t )2))

andthce trap ,n rmate igindepende n ist&tunainnrmlzto

Figre 4. )n 4.4._-.- 4.6
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Figure 4.3. Truncated Normal Distribuýion, Dengsty, and hazard Rate
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NOTE: jA and 6 are maximum likelihood estimates of ju and a. The Appendix describes
the techniques used to obtain them. Using these estimates, a chi-square goodness-of-fit

test was performed. The hypothesis of normality could not be rejected at the 20-percent
significance level. Results ciffering from these by less than 1 percent were given in a
curve fitted by the rules of E. B. Ferrell, "Plotting Experimental Data on Normal or
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Figure 4.4. Truncated Normal Survival Distribution: J57-F-59
and J57-P59 Jet Engines (Normal probability graph

paper)
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SJ eibull Survival Distribution

The Welbull distribution was introduced in 1951 by the Swedish

statistician Waloddi Weibull in order to describe the tensihe strength

of steel [14]. It has since been applied to a variety of reliability

problems. The Weibull survival distribution is defined on 0 < t <

an4 assumes the form

R(t) = exp (- Xts) , X > 0 , > > 0 . (4.17)

The iorresponding Weibull survival density function is

p(t) dR =,stSlexp (_ Xts) , (4.18)
dt

and the Weibull hazard rate takes the form

n(t) - Xsts- 1  . (4.19)

Observe that if s = 1, then the Weibull distribution reduces to the

exponential distribution with parameter A. The hazard rate 'is increas-

ing if s > 1 and decreasing if 0 < s < 1. one can think of the

Weibull hazard function as the best power-function approximation to an

arbitrar- .,zntinuous hazard rate in a neighborhood of t = O.

P._,:.,,"ýZ Z¢f th :eibull distribution, density, and hazard, rate and an

applk -riJon appear in Figures 4.5 and 4.6.
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Sj• Loanormal Survival Distribution

The lognormal survival distribution appears to be finding increasing

favor as, a candidate for the description of survival data. It has been

applied to the description of crack growth as a function of tins in,

primary aircraft structures [3] and to jet engine compressor bleed control I
data (cp. Figure 4.8).

The lognormal survival distribution is

R(t) - exp '' eu ge cLu
a r u

where .0 < t, og-et is the mean of loget, and a is the standard

deviation. The corresponding lognormal survival density is

p (t) - exp-" - -- . )• (4.21)
and ( /-

and the lognormal hazard rate is

ex'- 2(og t l IIt

n(t) P 2- (4.22)

t

Graphs of these functions are displayed in Figure 4.7 .8

exhibits an application to observations. Notice thai rate

(Figure 4.7.4) increases at first, attains a maximum rIlepreases

thereafter. Whiýe this behavior is not often observed, tit iample

illustrated- in Figure 4.8 suggests that the lognormal distribution may

be appropriate for some special types of aviation failure phenomena:.
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4,5 Gamna Survival DIstribution

This distribution generalizes both the lognormal and the exponential

distributions. The gamma survival distribution is

R(t) I f e-Uu-du s > 0 A > 0 (4.23)

where t > 0 and

r(s) (4.24)

is Euler's gamma function. If s 1 1, then the gamma distribution

reduces to the exponential distribution R(t) - exp (- Xt).

1
If. s= then the substitution of variables

21 logeV - 1)

U = lo (4.25)

transforms the gamma distribution Eq. (4.23) into a lognormal distribution

relative to a pseudo time variable T - eP+Gf2'2Xt. The gamma survival

density is

XsIts-

p(t) s) exp (- Xt). , (4.26)

and the gamma hazard rate is given by

XSts-1exp (- Xt)
n(t) t . (4.27)S -UuS-1lduf e.u 1ci

Their graphs and an application are displayed in Figures 4.9 and 4.10.

50'



r~t (s f uldu

xt

Rlt)So

Fig. 4.9.1

X< a t) Ss-i
r (s) ep( t

p(t)

Fig. 4.9.2

tI

S S-1
=Xt exp ( t

IAO

SFig. 4.9.3
0t

Figure 4.9.. Gaina SUrVi~7a1 Distriu6uticn, Density, and Hazard Rate

51



1.00

-9 Caomsi~ distribution,
S -1ISO,
A- 0.01536

U.-

.on

0 10 20 3
Ag hnreso3lynhus

.52



•., ..- - - . ... . .-. •. . . . . •.-- - - - - - - - - - - - - ---ii,: ... ,.• • , • . ,_ ... . .. ...

5. SIMPLE AND COMPLEX SYSTEMS

!,J, The statistical study of reliability-had its origin in demography,

and its terminology reflects this.history. The survival distribution,

which specifies the probability that an individual belonging to a homo-

geneous population will survive until time t , yield4; a hazard function

which, as time increases from birth until death, initially decreases

from large values during an interval of infant mortality, remains rel-

atively constant for some time, and then, as the wear-out interval of

old age is attained, once again increases. Thus the graph of the hazard

function is a shallow U-shaped curve, frequently called the "bathtub .

curve" in reliability literature; cp. Figure 5.1.

y "170t)a

0 .1

'1

Fig%,+ 5. 1. "Bathtub" Hazard Fuvction

Thes reader will have noticed that none of the standard reliability

distributions described in Section 4 gives rise to a hazard functionwhose graph is U-shaped. For instancer, the Weibull distribution cor-,

responds to a hazard function of.-the form (cp. eq (4.19)).

•8,6

( -, A > 0 , > 0
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which increases with increasing time if s > 1, is constant if s - 1,

and decreases with increasing time if s < 1. The hazard function for

the lognormal survival distribution increases to a maximum and then

decreases as time increases. Such functions can be used to describe

the infant mortality regime of a hazard futiction, or the wear-out regime,j

but not both. This remark has an important consequence: if an item

displays infant mortality characteristics, that is, if n(t) is a de-

creasing function for small positive t, then q(t) can only 'be repre-
sented by one of the standard distributions (such as those described in

Section 4) for epochs much earlier than typical wear-out epochs, since

the infant mortality data is necessarily acquired first. There can be

no solely mathematical method for gaining information about wear-out

characteristics from data which includes infant mortalities.

The reason for this state of affairs is plaia in human mortality

characteristics. Although the statistical properti-a of infant mortality
and wear-out at old age are separately highly regular and susceptible to

statistical analysis, their causes and corresponding hazard functions

are very different. There ti- no reason to believe that any one math-

ematically simple statistical distribution can be related to the under-

lying physical phenomena which correspond to both extremes. It thus

becomes necessary to think of the U-shaped hazard function as the sum

of (at least) two independent functions,

I; n(t),- n(t) + nI(t) (5.2)

where n0 (t) describes the hazard due to infant mortality and n.(t)

describes that due to wear. One could argue for includinki a third'

hazard function to describe hazard at intermediate ages, as isidone

in demographic analysis, but this will not be necessary for our present

purpose.

With n decomposed as in eq (5.2) above, and supposing that both

ipfsnt mortality and wear-out are present for the items under consider-

atlon, we may think of n ao a decreasing function which tends to a

limit k0 , 0k 0 m lm n0 (t). It is clear that without further
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detailed information about the (physical) characteristica ,of the item

under consideration, analysis of early failure data cannot lead to any

conclusions about wear-out, . infant mortality persists for a ,signtfcant

period .of time.

Reliability theoreticians are consequently constrained to study

specific systems for which it is possible, on physical or other grounds,

to determine n and n• independently, or to study systems for which'

either infant mortality or wear-out (or both) are negligible. They are

faced with an additional difficulty. Complex systems whose constituents

follow various distinct survival distributions, or the same distribution

with a variety of parameter values, are not amenable to rigorous analysis.

For these reasons, the bulk of the theoretical literature concerned with

reliability is devoted co Dimple (one-celled) items for which the hazard

function is assumed either non-decreasing (wear-out) or non-increasing

(infant mortality)--the constant hazard function, corresponding to the

exponential survival distribution, is a special case of both--and to

configurations of identical or closely related simple items which possess

special symmetries, e.g., series- or parallel-connected simple items.

With these constraints it may be possible to derive optimal maintenance

policies if the family of policies considered is sufficiently structured.

Perhaps the most popuiar structural policy constraint is maintenance

periodicity.

Many simple items exhibit wear. If replicas of s'4. an item are

expected to be in service at a future date significantly greater than

the lifetime of an individual item and if single items are producable

at low cost and in great number, then age exploration, or'life testing,'

will establish the hazard function from observations and thereby idae-n

tify it as a standard hazard function, amenable to theoretical study, if
it happens to be one. If an analytical expression is not knoton, an i

approximation can be 6btain&l (e.g., following the prescription given

in o),, .or numer'icAýImet'hods can be useu to ý.ariy out the comutations

callid for Iby .theoretical analyses. Li this -:ase there i' no probleii

in principle in applying standard methods of reliability theory. ' -
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If, hbwtver, the expected' operati6nal lifftime prior to, Obsolqscence

of the type of item is comparable with the 6xpected lifetime of an Indi-

vidutal 'item "of that type, theu, unless accelerated testing is possible,

there will be no time for age exploration; wear characteristics must be

derived from some more basic, usually physical, argument, or hypothesized

based on related prior experience, or analyses founded on explicit knowl-

edge of the hazard function, must be forgone.

S ..(:v-. , show that there are •important categories of items for

which .? survival distribution iS a standard distribution, and theý pa-

ra:'.. ter values can be estimated from actuarial analysis. An extensive

analysis of survival distributions was reported by D. J. Davis [1].

Among his findings were that the exponential survival distribution was

characteristic of such devices as

* commercial aircraft radio tubes,

" 'Linotype machines

"* automated mechanical calculating machines

* ball bearings

All but the last are now obsolete. It has since been reported that most

qlectronic systems and most 'complicated' systems also fall into 'this

category. Aircraft engines, however, usually exhibit some degree of

wear-out, i.e., their hazard function ultimately increases with time-

(cp. Figures 4.4, 4.6, and 4.10, but also Figure 4.2).

Typical studies of preventive maintenance policies for simple sys-

tems assume that the actual state of the item 'is known at all times

prior, to failure, including the associated survival distribution. The
time of failure of the item is the only unknown. Moreov', typical

maint~enance actioiLs are restricted to replacement of a g2ven item by

an identical zero.-'timed item, thus 'renewing' the system of, which the

item is a constituent. Generally, the problem trepted is determination

of 'the time of replacement (renewal) to minimi.ze cost or meet a numer-

ically expressied safety requirement, or to int~roduce redundancy (i.e.,

create a symmetrically interconnected collection of replicai of the

simple item to form a simple system) in ordeV to reduce the failure

rate..
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S1a When the items which constitUte a system are assentiaJly i4entifal.

and are interconnected in a symmetrical way (eg,, series--or parallel-

interconnection) and when the survival distribution.correppond.ng to..*,

each, individual item is known, then it may be-possible to perform a,

complete mathematical analysis of the reliability of the system. Syo-

tems for which one or more of these assumptions are invalid can Ibe: caled

complex systems. This definitiftn dif f.s in an inesoential.,vwy .from that

given in qhapter 4, Section 2, The combined vehicle- and earth-based•

control systems for the Apollo and Viking projects are examples of ore-,,
time complex systems for which neither complete age explorAti.ro nor,,.

accelerated testing to .determine survival characteristics was possible.

This deficiency was compensated, to some extent, by the extensive use

of redundancy. Nevertheless, it is clear that a complete mathematical

reliability analysis for such a system' is out of the question.

Commercial and military aircraft are examples of complex systems

about which much more can be learned through testing, age exploration,

and experience because there are, relatively, eo many more of them and,
ultimately, they are in operation for a long period of time. But for

them also a complete mathematical analysis is out of the question be-

cause of the large number of diverse items, each with its own survival

characteristics, and the compl'ex and irregular interconnections and

multiple uses and paths which have been designed into modern aircraft,

or are unintentional consequences of the design. Moreover, aircraft

are modified as time passes to incorporate new developments in assembly

and subsystem design, and maintenance activities quickly ensure that

the ages of various subsystems, both majok and minor, bear little rela-

tionship to the nameplate age of the airframe. _

Just as the (classical) properties of a gas cannot, in practice, be
derived from knowledge of Newton's equations although the laiter suffice

in principle for the' task, so too the survival characteristics of a

complex system could not be obtained in practice even if complete knowl-

tedge of the survival characteristics of its constituent parts as well as A

the details of their interconnection were available., An alternative

method is needed, lesa sensitive to the. 'microscopic' 4tructure of the
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coapUUX sysevm and therefore necessarily of, Insufficientt power ;to- trat

all eonceivable questions, 'but powerful•enough neverthelews to-gutide

the formftlation of maintehance polidy,. To cdntinue"-iteis sImAto,,the

relationship of-a method for anslysis of complex systevs to the tradi-

tioaal method for analysis of simple system can tbe likened •to the

rilaticnship between statistical mechanics and tiewtonian mechanics:

detailed knowledge- about individual itemis and their' intere.oneotiotir

will, In general, not play an explicit role, but the method will pro-

v.de the decisive informaticoi ,0. i±s-used to formulate answers to.the

basic maintenance piolicy, quest-ý.S 3,

The Reliabilit-I-CentIered Maintenance Program [6] described in this

volume is a general method of designing maintena&ce policies for oomplex

systems which requires very little explicit 'microscopic' knowledge of

survival distributiois and interconnections for the tens of thousands

of Clonstituents of a commercial aircraft. The next Section is devoted

to a mathematical description of the structure of this- Piogram.

i
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6. RELIABILITY-CENTERED MAINTENANCE

"6.*, The principal goa3 of a maintenance system is to ensure the highest

practical standatd of operating performance of the equipment being main-'

tamned. Criteria of operating performance are, however, quite varied,

depending simultaneously upon the cost of maintenance and the consequences

of failure. For circumstances where the consequences of failure are

relatively minor it will generally be sufficient to focus on the relia-

bility of the constituent items of-the system, and to learn from

experience as well as from testing whether component redesign is necessary

and which maintenance policies are cost-effective. As such information

accumulates, .naintenance policies and system design evolve together to

improve operating reliability.

Those systems for which the consequences of failure are aerious,

such as commercial aircraft, ndclear reactors, and military missile

systems, must be considered from a different point of view. In each of

these instances, the consequences of certain failures are unacceptable.

Critical failures in the sense of Chapter 3.2 belong to this category.

It will be convenient to refer to any unacceptable failure as a critical

failure. The criteria of unacceptability may be quite complicated in any

specific instance, although certain types of failure will normally be

clearly unacceptable. kor example, a failure in a military missile which

destroyed its ability to complete it. mission would be unacceptable, as

would a failure of a nuclear power reactor situated in a densely populated

region which could lead to an explosion.

In situations such as these there is the tý,mptation to avoid failure

"at all costs," but, since there are always practkal. limitations to the

resources which can be brought to bear on any single problem, and also

because in certain comVllcated circumstances it is not possible to obtain

all of the potentially valuable information which would in principle be

necessary to avoid failure, the attempt to avoid critical failures must
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inherently be a compromise between the imputed cost of the failure and

the cost of procedures that would decrease the probability of failure.

For complex systems, such as commercial aircraft, it would be pro-

hibitively costly to devote serious and scheduled mainteneace to each of

its tens of thousands of parts. But of greater importance .- the obser-

vation that intensive scheduled maintenance (be it. "Hard time" or "On

Condition;" cp. Chapter 5), regardless of cost, will not necessarily

reduce the probability of critical failures. This suggests that the

constituent items of a system should be analyzed with regard to the.

conseguences of their failure rather than merely with regard to their

reliability. If the consequences of failure are acceptable, then, in

the absence of some other reason unrelated to criticality of failure,

the maintenance policy designer need not and should not devote resources

to scheduled maintenance of the Item. The recognition of the importance ,1

of the functional role and consequences of failure of an item are basicI a principles of the Reliability-Centered Maintenance Program; ep. tihe

extensive discussion in Chapter 3. Its main practical consequence In the"

case of commercial aircraft is that, of the tens of thousands of itorms

which are part of an aircraft, only several- hundred participate in

ceitical failures and thore.ore the latter are the only candidates for

scheduled maintenance procedures.

It may turn out that an Item participates In critical failures but

cannot benefit from scheduled ma.Lntenance. There may not be any way to
de'tect reduced resistance to failure..,O)ne resoluticon of thi~s dilemma is

to redesign the item to avoid part Icipat Lon In c ti aAfalluros or so

that reduced resistance to failure can he detect, , by scheculed maintenance

operations. The latter solution is an instance of another importa.nt

principle of the Reliability-Centered ta tntenance, Program: items whiclh

participate in critical failures should be replaced by Items whicih con-

vert critical failures to noti-critical fallures or to a moide of reduced

resistance to failure which can be detected by schedtuled maintenance.

operattione- One consequence of thbs policy Is that it may lead to an

Licrease in the number of failtros or equipment replacements, thereby

Lncrýtaing matntenance costs; but, byi reductnfi the probabhtttv of' rr1t leitI
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failures, it also roduces the total system operating costi~which include

the imputed large costs .of critical failures. Thus, application of the

Reliability-Centered Maintenance Program simultaneously

e Reduces the probability of critical failure;

e Reduces maintenance costs by reducing the number of items
considered for scheduled maintenance;

9 Increases maintenance costs by replacement of items whose
reduced resistance to failure is unobservable by items whose
reduced resistance is detectable by scheduled maintenance, or
whose failure is non-critical.

The remainder of this Section provides a mathematical formulation

of the preceding ideas. There are three main mathematical aspects. The

first corresponds to the partition of the system into sets of items that

are functionally related ty means of the consequences of their failure

(cp. Chapter 7). The second'is the formal expression of the costs of

maintenance and consequences of failure in common terms of direct and

imputed costs. This maintenance/failure cost function is really the main

object of study. The principal purpose of the maintenance policy

designer is to minimize the maintenanze/failure cost function. The third

mathematical aspect models the iterative procedure used in the Reliability-

Centered Maintenance Program to minimize the total cost function. The

Decision Diagram approach of Chapter 6-is the main component of this part

of the Program.

6.2 Every complex system is composed of many individual parts or items.

These constituents are not necessarily in one-to-one correspondence with

functions performed by the system. Most physically distinct parts per-
form no function at all in isolation; some may be cannily designed to

participate in the performance of several distinct functions (as an air-
liner seat cushion is also a flotation device). Thus it is impossible
to identify parts with functions or roles, and it may not even be possible

to obtain complete agreement upon what constitutes the set of elementary,

or irreducible, items of a complex system. We will assume that some

choice has been made. The volume titled Reliability-Centered Mainte-

nance [7] provides a detailed description of one procedure that can be

followed to make this selection for commercial aircraft.
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Let j denote the set of items of some complex system and Itt a

denotel typical item belonging to S. Items of a given type may occur

more thanN~nce in the system; each occurrence is represented by a distinct

element of S. We may think of the items which constitute the system as

represented by points, and of S as the set of those points; this

interpretation is used in Figurq 6.1

Si

32I

Figure 6.1. Set of Items of a Complex System

To each s E S there corresponds an associated survival distribution

t t. Rs(t), where we suppose that some satisfactory definition of failure

for s has been selected. The reader should recall the extensive dis-

cussion of this difficult problem in Chapter 3. With an appropriate

definition of failure for the system S itself, let RS(t) denote the

survival distribution for S. If R (t) could be readily expressed in

terms of the Rs(t), s e, then the problem of maintenance policy design-

would be reduced to the establishment of a maintenance procedure for each

s e J which ensures that PI(t) > k (where k is a given minimal.

acceptable system reliability) and, subject to that constraint, costs

least to implement. In other words, programs developed using the tech-

niques of reliability-centered maintenance tend towards minimizing all

costs that are a function of scheduled, maintenance.
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But RI(t). cannot be explicitly expressed in terms of the R8(t)

for complex systems consisting of numerous parts. The set $Rs(t) :s -11

of survival distributions does not contain all the information necessary

for the analytical solution of the problem because the components a of

the system are in general interconnected and, therefore, at least some

of the survival distributions Rs(t) are not independent. Suppose, for

the moment, that the probability •of survival of each se S were

independent of the probability of survival of the remaining items. Then

R (t) - s 7 Rs (t) ,(6.1)

and this relationship would enable one directly to reduce all questions

about system survival to questions about the survival characteristics of

the elementary items, ignoring their interconnection. Since the Rs(t).

are, in general, dependent, we have the choice of studying the inter-

connection of the items or avoiding consideration of elementary items

altogether. The first alternative is rtpical of the standard methods

reported in the literature. The second alternative has received much

less attention (a recent na.-.y4is which adopts this viewpoint is reported

in [i0.; t bs at the undation of the Reliability-Centered Mainte-
4, nancI,.e raft.

We need some terminology. If S is any set, then a partition of

is a collection of subsets A such that

SeA (6.2.1)

and, if X tA, X' c A, then

X X' implies Xf r)' 0 0 ; (6.2.2)

eq. (6.2.1) asserts that the subsets X exhaustS, and eq. (6.2.2)

states that no two of the subsets overlap. This situation is represented

in Figure 6.2. A partition M of S is said to be a refinement of

the partition A if each P f M is contained in some X e A. Thus, the
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refinement M further partitions the subsets A. A reffnement of the

partition A exhibited in Figure 6.2 is designated by the dotted lines
in Figure 6.3.

Si•A -(ki)

An

Figure 6.2. A Partition A of S

It
SAc

Figure 6.3. Refinement M of Partition

The collection of subsets of the form where s runs through allthe elements -of S, is the fines___t partition of all; it is a refinement -or

every partittion of S



.WA -low'

Nowz suppose zthat' S is 'the set of. elem'4ntary, /$tem's of'A' a I,1P~e'

systm ac i P.t is, 'a 11rtition otf S. Just a's t h 'L iriut

Rs (t) A~ a -. ciatýý! %'OtLh the 9syitpm it3,elf, So too can a su~vv
dduin''&'be ,49oeirted wft'th eac'h se~t X belo~iging to,"r-ho

Partriti.emr Each X is a co41lectlpi.i of. items, -huit RX'\c) wt1l inot- in

general be FAte product b; :!-hý' sLrviýVal dif~tribut'loas' gf the constituent

it~mis. s -e X because of thoir lntearconntctions. Neve'rt feles's thi-re'. may

hoý So2We partitiois L. for wIi~t the survivA1'distributionis' at'-ump a

particularly'ccnvinitnr. ana;?vtica1 form or, eve~n, i they c.-Annot. be,

explibi4.y id~ntifi~d, have part ihilarly .convený.ent praperties.

One purpos~e of the decpmpobiftion -arid-partiftoA pr6-cedures discusesk4

in Chapters 2 and 7 is to define a r-onvenient partition of the set of

partis of an airliner. 'The mdt .hod'describo-d 'is' applicable,, in princýip]e,

to any LOm~plex systemi. "laricous piteis are amalgamated lay their inter-'

eo1LnýctlotI5 and functiona'l interdependence into components, sv'bassemb~iis,.

assemblies, and -subsvstems. Each of these is a niatural candidate for an

element in a partition of S. If, for example, a parti'tion k coataias

some subsystem A', thetij the subassem~blies which constitute X, together

with the other elements of A, define a refinement of A. .

Let us suppose that A is a partition of S such that the survival
functions Rx(t) and 1I(t) of any pair of distinctemnt X, V

X, X'EA, are independent. Then

A partition enjoying this property always exists, because the coarsest

partition, which consists of the single set 9 itself, has thili property.-

In principle, muost is known about the suirvival'characteristics of the

elementary parts from which 6is ultimatiely construtted,,an d progltC3-ý

sively less is known, about in-creasingly comnplex kinal.gAmations of the'

elementary parts. Therefore we seek that cotmp'ýomise pa~tition whose.

constituett subsets are as simple as possib~le, 'i.e., 'es.close to the

elementary parts as possible# while still tet~inltiý'the. properZ' tbat

the survival distributions of the elementL ~if'the partition are: inaupe~hdettt,.
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10 ,'that ,.. (6,3) rlmains valid... 'That is, 4monA all partitions of.

for~which eq.. (6.3 holdsý, #,e seek a-partiti.ýnsuch that, if M is any
refinement ofA, ihen eq. (,C.3 does viot hol ,fo M.t S.. partition A
'which hs this property wijl be said to be maximally independent. It is

clear that. 4'aximu.lly independent partitions exist but are not necessarily

utliqv9; that is, there may be more than one way to select a maximally

independent partition.

It is intuitively clear that a'complex systetu ouch as an airliner

can be partitiohed'into kqdlpende't (or at least very nearly indepeiident)

subsystems according to this prescription. For instance, apart frda a

common interdependence on the powerr-plant as'an energy source, the sub-

system consisting of the collect-ion of passenger reading lights iS

independent of the cabin pressurization subsystem, the landing gear

assembly is independent of.the flight control surfaces subsystem, and so

forth.

Hereafter'we will assume thaZ some maximally independent partition

A haf been'selected. The next task is to associate a-cost function with

this partition.

6k.3 Let CX(t) denote the sum of the expected cost of maintenance and

imputed cost of failure of the-.partition element k' A as a function of,

time t. CX(t) includes the cost of Hard Time replaceme~nts,, of.On

Condition inspections an'i replacements, of warehousing and distribution

of replacement items, and all other costs attributable to the maintenance

function. It also includes the imputed cost of failure of X. For some

partition elements the co,-t of failure is negligibly greater than t.he-

cost of renewal of X. For instance, failure, of the in-flight motion,

picture system, a fairly frequent occurrenpe on some airlines, is at

worst an irritatiou which may influence passenger preference in a minor'

way and thereby affect future passenger load factors to some slight degree.

Failure of other, safety-related, partition elements can enteil.costs,

far greater than the cost of :enewal of X. -If failure aborts the mission.

"or, in the .;se of airliners, causes 4oss of life and/or loss of the entire

- ,system, tbep the Imputed costs of the fslure constitute the princip.l
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drivia.g force b e dit 1 the desiga o f the ~i~itn ePolft~y, CX'(t)

V I'••¸ 'i•• F ýi I. ., .. •-• 1• - .1 .• . , Il ! , .

inesdes's such c9Pts..

Ceirtaln coslt .9 Ar e.no t Included lin •('i) 'in what f ollove, although

they q1 rght find tbeir placo 'ixa rP61e comprehensive treatment'of our

sub'.bect. 4n th- caoa of commercial/alTriners, revenue-producing costs,

including advertiring and non-maintenance persannel eipense~s, are exckuded

Sfro Cx (t.), .W'.

Wititut loss' of generality we may suppose that ( is the sum of I
'an abpolaute~y continuous function (which represents, ft part, .the 1aiputed '

0.ýst oi iaili 7re ) and a discrete part (which Indludes thtecO0S• 6' 01

periodic maintenance and renewal); recall,! the definitions given it
section' 2. It foý,llows that the cost funeziot, CX,(t) possesses' a covrre-

aabondin cost dens uouy (generalized) function c((t) (* tecaltI e6.,, (4,.30N

and the related adiscussiod of the density associated' ith a diperet

distribution). Then
Seto 2 tfollw ,httecs ucotC~t nsse qr

CX(t) i cX,(t)dt cl(6.4)

Ii n never fties, then CX(t) essentialy redtces to the cost of

approximated by a step function. If the probability of failure is'not

zero, then it will be more useful to express the mainter.ance/failurfl cost
CA(t) in terms of the failure distribution FX(t). If X, is maintained

in 'ac~ordancu with a Hard Time policy without inspection, then the

associated renewa2 cost density will be proportional to the nuinber'of
items which survive until the replacement time. If that time is' tk,
then the correspondl.rg cost den•ity is proportional to '6(t- tk) a (t),

whee w6c .- tic) is the Dirac delta function (cp. Eq. ( i27)). If A

is maintained in accordance with an On Condition poll zy, then Costs will

be incurred at every inspection., If inspection times are t1 , t 2 ,,..,

ti,..., then the cost density will be of. the form

6( -t R It) A
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"". ateAnci of X at.,time '.

Finally, it , is maint'ined .hn .ccordaik.e wirh'a Conditron Monitoring

process, or ijZ X actualIV fk4la., then theý -cresponding cost de s1tyY

will be proportional tr 0, e f ax.ur n ,' = -- It follows

that tý4 general cost densiLy has the form

if m

, ,' ''' t ci(t) POx(t) + cx .(t-,;t(

The imputecd costs of failure are represented by 'c (t). Eq. (6.6) shoQa .-
, .tht failure cost density is proportional to the failure clensity and

that other maintenante costs Are ptoportional to the 3.lrvival distribution.
In order to make these expressions compatable, we will.e:ýpress the

sU41val; •istribution in terms of the hazard rate and the failure density.

Froa eq. (3.14) we have'. R?(t) - pX(t)/nri(t) so '

m I

f~t),÷• cx'(t) 6(t -tk)

c (t) =cx i c • Px)

where we-have written '1
'~~ S t (t-t)

=~t exidt) + nx(t)..

If the frequenc- of inspections is large compared wAith the frequency

of failures, then the delta functionp, can be approximated by linear

interpolatiou., This, amounts to tbe assumption that inspection costs are

• , 'expended uniformly with time rather than at a discrete set. of .times*

The functions 4(0'), c id 4 1 (t) are costs, hence positive

ftunctions. Veis fact will.. be usea iUt what follows,

The total uaintonanqe/f.'lure cost of the system S as a function

of time will be

-C Wr)d1t) (6.8)
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v'hevvsm: 'q Pay"rrwritten dFj(t) in place of ph(t)dt. As we have already

*rema-'kcad aboVC, Lhe main ohiective of the Reliability-.Centezed .Maintenance

,:f rdg~rc.*a iii p? 'ouiaiiize the'value of C(t) *for each time t, given the

hi~tcry E? f the .system :for times tv < t.

T,43 ,PTýproblemd Of minimizing C(t) is Still.'too co~iplicated to admit

oma~themitical solution even if all thfe quantities invo~ved w~ere pr~ecisely

kiiiu. Nevettheiless, a simple observation provides 6 the Ley for implemen-

tatrton of a Systeumatic iterative pro~edu'ire which acts to reeace C(t)

Vt~he latter is not alrpel~y 4, loc,4 vitviaum.

Siquce A - 4s a vr .ximally -i zdrepi nt 0~tto,~t iintb

posasible td reduce C('(Z) 'by passage, f.o. a reftinezent M f 6r which t~he[ &Hurvival, distr.LurAýnis ~() E ae 'indepeadent. This me~ho that

C(ý need~ tot' be ~tte globally miaixtal mainter'ance/fai].ure cost for the

systemi even f~hou,%h It may be minimal for the collection of al~i maximally

con tra~iot o: 'makimal indapendence of the partitionj depends on the 'choice

of erttlo. .Thtrr' is no guaiantee thut minimization'of C(t) for trip-

givetn maxinkilly indepenident partition A is the s&.4mA aa'minimization of
C ,(t) over the zlass 'ý-f all maximally indc~pendcnt partitions of the SY Stkhn.

* Thus we must again conr.] tde that the mint~um whichvwi1l be attained'by

* the proc~edasr~ abo.ut to be deacribee, henze also the minimum attained byI
the Reliabi.lity-Centertd Maintenance ProerAm, is not necessarily gl.obal.

Nevertheless, experieuste svZigests that the minimum ac~hieved iti tht.

applic atioa of the Program' to Comtturcial air Line. 'operat ions Mýy "0e' e1ose

* to the global minimum and, in any, event, partial miniudizationn! C (t)ý

by application of the poiiciesi introduced bzlov leads to significfi~t

reductioxns in Lhe -value of -C(t" in-!praetical s.ituations,,,1

Returnin$ now to eq. (6.8), obsenve thtat W~t 'Zý ~'iin C~t)

* is a finite sum (over Oixe elements tof 't hw plait1n:6 A), o f itkgralp

whose inernsae~o~t fnon-aeaatJ.%e f unct Lors Ccasequently,
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the total cost C(t) through time t will be reducedlif one or more

.O.the following .three possibilities occurs:

I. For some Xi (A there is a maintenance policy which
f

replaces the failure cost density cf(t) by a failure
f

cost density cx(t)* such that

cf(t)*•! cf(t) for all t and

cf(t)* < c (t) .for t in some open interval.

UI. For some A A there is a maintenance policy which

replaces the maintenance cost function c ,i(t) by am (tx suc thatA
maintenance cost function ci (t)* such that

m m
cl(t)*_< c (t) for all t and

c (t)* < c i(t) for t in some open interval.

III. For some X EA there is a maintenance policy which replaces

The product yx(t) Px(t) by a product y*(t) p*(t) such'
that

Y*(t) p*(t) -< (t) Px(t) for all t and-

* P*( t)j< I(t) Px(t) for t in some open interval,

and neither nor II is applicable.

Maintenance policies of Type I occur when an item is redesigned to ,

incorporate redundancy or other fail-safe design methods which act to

re*,ce the cost of failure of the initial item without necessarily

affecting its probability of failure. This type of policy change tends

to apply to modifications of equipment design rather than to modifications

of operatibnal maintenance procedures.

Type II policies are indifferent to survival distributions and

therefore are really independent of the properties of the equipment beinig

maintained. They are principally managerial or organizational policies

concerned with matters such as scheduling of periodic maintenance tasks,

location of depots, provision of replacement parts in adequate number to

reduce downtime revenue loss while avoiding costs associated with.
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excessive replacement parts stock, and so forth. Optimal Type II policies

ian be difficult to identify and implement, but their nature and importiatce

have always been understood by managers and cost accountants., Nevertheless,

the large costs of critical failures cannot, in typical situations, be

counterbalanced by efficiencies from Type II decisions, that is, wih6ut

modification of the survival distribution or the cost of failure.

The most significant opportunities fqr the introduction of mainte-

nance policies which reduce C(t) are of Type III, which c'an be further

categorized into three subtypes. Using the notations and constraints

given in III, they can be expressed as follows:

liA. y*(t) !- (t) and p*(t) >. p (t) for all t;x t;

IIIB. y* (ta < (t) and p*(t) x p (t) for all t;

IIIC. Neither of the above.

For either of the first two conditions there will be some open

interval on which strict inequality obtains because of the condition

P*(t) < Y (t) o (t)4

in III. It is possible that there will be some intervals where
pX(t) < pX (t) and others where p*(t) > pX (t) compatible with III;

these cases are subsumed under IIIC.

In circumstances where IIIA is applicable the reduction in the

probability of failure density may result in an increase in maintenance 4
costs. Nevertheless, if a failure of the item in question is critical

with a corresponding large cost of failure density c (t), then the

product YX(t) PX(t) will generally be reduced, often by a substantial

amount. Maintenance policies of this type correspond to situations

where a judicious additional investment in an appropriate maintenance

action results in a significant decrease in the failure density for 'items

which are associated with large failure costs. Essential for the efftctive

introduction of Type IIT maintenance policies is an evaluation of

failure modes and the consequences of failure. Based upon such infbr-

mation, maintenance policies of Type IIlA can act to reduce C(t) by
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.n~rnduc'nsa redefinition of an unsatisfactory condition (qp. the dis-

cussion inChapter 3)--that is, a failure-in order to convert functional

failures (especially critical failures) into non-functional failures.

This conversion will normally be accomplished'by introducing instrumen-

tatlqn or various inspection and monitoring activities, each of which

adds to maintenance cost, but the increase in maintenance cost is offset

by the reduction in the expected cost of failure.

Policies of Type IIIB are particularly effective when applied to

non-significant items,.(cp. the discussions of significant items and

Condition Monitoring maintenance in Chapter 8). They decrease yW(t)

while possibly increasing the failure density pX(t) in a manner which

decreases the product of these 'wo functions. If the failures of an

item are not significant, then there generally is no*comptlling reason
to implement either a Hard Time or an On Condition maintenance policy.

By placing such items in the Condition Monitoring category, Type. IIB

cost reductions can be obtained. In effect, this means that the failure
f;cost density cX(t) reduces to the cost of replacing the failed item.

If this is less than the cost of maintenance over the lifetime of the

item, then the cost density product is reduced by implementing this

policy. For example, a maintenance policy which periodically dismantled

and renewed seat recliners would be relatively costly compared with the

imputed cost of a recliner failure. Consequently, although the failure

density might be increased thereby, a revised policy which merely

monitored the condition of the recliners by establishing a mechanism to

report users' complaints wou'd certainly reduce CX(t) and-thus C(t)

itself. It is of particular importance to seek those elements of the

partitiqn for which scheduled maintenance policies result in greater

values of CX(t) than would Condition Monitoring, (i.e., surveillance)

policies either because maintenance processes do not reduce the failure

density (e.g., if the associated hazard rate is non-increasing) or

becapse the, cost of reduction by maintenance is greater than the imputed

added cost of failure through lack of scheduled maintenance. The

Decis;on Diagram technique of the Reliability-Centered Maintenance
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Program provides an explicit means for identification of partitioný

elements to which Type III B policies can be applied.

It may happen that application of policies I -III decreases C(t)

but that the new cost function is not minimal. Less expensive con-

versions of functional to non-functional failures, longer inspection

intervals and Hard Time renewal intervals may be recognized as beneficial

at some subseqhent time. New information may become available as a

result of experience or testing or theoretical advances. Equipment will

generally evolve, and constituent items will be replaced by others with
different (but not always more favorable) reliability characteristics.

Each of these occurrences may provide a cost-effective reason to apply

the policies I - Ill again, thereby bringing the maintenance/failure cost

function closer to a local minimum. The history of the iterated

application of maintenance policies of Types I to III will typically,' ,

when conceived as one grand maintenance policy, be of Type IIIC: neither

the cost densities nor the failure densities exhibit monotone decreasing '

behavior as time increases, but the policy nevertheless achieves an

overall cost reduction at each stage.,of the iteration.

A simple geometric interpretation of this procedure can be readily

visualized. 'der'the maintenance/failure cost function C(t) as a

function of I. rious parameters which determine a maintenance policy.

These would include Hard Time replacement Intervals, the reliability

distributions of the parts, and so forth. As a function of these variables

and for each time t the maintenance/failure cost function determines a

hypersurface in a multidimensional euclidean space. This surface has

the property that the total cost function is positive for each time t.

The maintenance policy designer seeks a curve on this surface which

depends on t such that for each fixed value of t, the curve passes

through the minimum point on the hypersurface corresponding to 'that time.

In more picturesque language, the desired maintenance policy is represented

by a curve which passes through the lowest points of the deepest valley

of thE cost hypersurface. The policies I - III are valley-seeking; with

each application, thley direct the curve further downward into a valley.
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Although there is no assurance that the valley into which~they direct
the policy is the lowest of all,,, the Reliability-Centered Maintenance. I

Prooram does ensure that the. maintenance policy selected gravicatesever

closer to the local valley floor.

74..
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7. INFORMATION AND MAINTENANCE PROGRAMS

I Ciitical failures of large-scale complex systems are generally

extremely costly; consequently, a maintenance policy which attempts to

minimize total costs must also attempt to minimize the number of critical

failures. Thus, an effective maintenance program will of necessity be

reliability-centered. The more effective the program is, the fewer

critical failures will occur, and correspondingly less information .bout

operational failures will be available to the maintenance policy designer.

It is in this sense that the objective of the maintenance policy designer
can be thought of as an attempt to minimize information, and that the most

successful policy yields no information whatsoever about critical failures

because it precludes their occurrence. That the optimal policy must be

designed in the absence of critical failure iraformation, utilizing only

the results of component tests and prior experience with related but

different complex systems, is an apparently paradoxical situation. More-

over, the applicability of statistical theories of reliability to the

very small populations of large-scale complexsystems typically encountered

in practice is questionable and calls for some discussion. Each of these

distinct viewpoints leads to the conclusion that maintenance policy design

is necessarily conducted with extremely limited information of dubious

reproducibility, an4 we must consider why it is nevertheless possible,

and how it can be done. The following two subsections take up these ques-

tions in turn.

7,2 Recall the geometric interpretation of the Reliability-Centered

Maintenance Program given at the end of Section 6. For each fixed time

t the maintenance/failure cost functicn can be considered as a fimction

of the various parameters whose selection specifies a maintenance policy.

This function defines a hypersurface in some multi-dimensional euclidean

space. Since costs are necessarily non-negative, the cost function will

attain its minimum value at some point(s) of the surface; we may say that

'such a point is the lowest point of a valley on the surface. The
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Reliability-Cent Maintenance Program is designed to seek the lowest

point in some valley on the surface, for each time t.

Denote the sur-ace associated with time t by St. If the varia-

tion of t is identified with a variable point on a line, then the

individual surfaces St can be stacked one next to other to form a set

S{St:O t - ; (7.1)
t-

S need not be a smooth surface itself because discontinuous modifica-

tions of equipment may introduce discontinuities in S as t increases.

For the sake of discussion, let us assume that S itself is a surface

(of dimension 1 greater than the dimension of each St). The optimal

maintenance policy at time t is one which corresponds to a local mini-

mum, i.e., a lowest valley point, on St. Combining these as t varies,

one obtains a lowest valley point on St for each t. These points

need not trace out a curve on S because changes of maintenance policy

can correspond to a "Jump" from the lowest point in one valley on S

to the lowest point in some other valley on St. Nevertheless, it is

impossible to implement more than a finite number of policy changes in a

finite time interval, so that an optimal Reliability-Centered Maintenance

Program corresponds to a finite number of curves lying on S, each of the

form t ÷f(t), with f(t) a point in St which is the lowest point in

some valley on St• Thus, as t increases, the point f(t) which cor-

responds to a solution of the maintenance problem traces out a curve

which runs along the floor of a valley in S possibly jumping, from

time to time, from one valley to another.

The mathematical problem which corresponds to this description con-

sists of locating the minima of S as t varies. If the equation
t

which defines S is known, then this problem can in principle be solved

by applying the methods of advanced calculus. In practice, were the

defining equation known, the number of independent variables entering

into it would be so great as to preclude an explicit analytical solution

of the problem. in any event, for reasons already cited and discussed
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\ in detail throughout [6), the defining equation can not be inown because

the available information is insufficient.

The defining equation of S containe all possible relevant informs-

tion about the consequences of all conceivable maintenance policies,

This is surely much more information than is actually needed either to

specify a locally minimal. (valley floor) curve or even to locate one.

',.\A4-aed, if p denotes a point of S and-if any downward direction at

is known, i.e., a direction for which the directional derivative at

-.o is negative, then a small displacement from p along the surface in

"twit downward direction leLads to a nearby point, say q, for which the

matatenan ce/failure cost is strictly less than the maintenance/failure

cosk corresponding to p. Observe that this procedure merely requires

information about the cost benefits of policies which differ little from

the policy corresponding to p: we may say that this procedure only

requires information about policies in a small neighborhood of the policy

p. Such information is the most likely to be available, or estimable, in

practice. Moreover, this procedure does not even require full information

about all policies in a small neighborhood of p; it suffices to know one

di.-ection which leads to cost reduction. In this sense, we may construe

the Reliability-Centered Maintenance Program as a well-defined procedure

for identifying directions on S which tend downward, i.e., reduce

maintenance/failure cost.

The rapidity with which the floor of the valley is reached l.y this

process depends on the size of the step taken in the downward divection.

If the step size is smaller than necessary, it will takE more stq'ps to

reach the valley floor, so that greater than necessary maintenanice/failure

costs will be borne: unnecessary maintenance activities will have been

supported, avoidable failures will have been experienced. If the step

size is too-large, then the maintenance policy may leap from onelvalley

wall to another, unable to detect the floor,; and producing an os) tillating

policy which can, in unfavorable circumstances, produce successively

greater maintetance/failure costs and ultimately oscillate among lcCal

maxima. The choice of.step size is critical, as has been implicitly

recognized in the consetvatlve federal guidelines poncernlng extension of
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Hard Time replacement intervals in commercial airline maintenance policies.

It is r'learly preferable to select a step size smaller than optimal

instead of one larger than optimal because the consequences of the former

vary continuously wtth step size whcreas small changes in the latter can

produce large and unanticipated cost increases. It must also be recog-

nized that the size of the optimal step depends on its location on the

surface S, or, to put it more picturesquely, it depends on how "wrinkled"

the surface is in the neighborhood of the point from which the step is

taken. If the surface slopes gradually and gently downward toward the

valley floor, then a larger step will be admissible than is the case whenI
the step-off point lies at the top of a steep cliff overlooking the valley.
Determination of the optimal step size is a more difficult problem than

is determination of a direction in which the step should be taken because

the former implicitly requires some estimate of the magnitude of the

directional derivative whereas the latter merely utilizes the sig of that

derivative. Suppose that there is reason to believe that the absolute

value of the directional derivative is bounded by a known constant on the

entire surface S. This information ealsone to etbihamaiu

step size such tI~at maintenance/failure cost increases as the result of

over-stepping are held below some prearranged value. Hypotheses about

the maximum absolute value of directional derivatives can be based upon

prior experience; relative to a maximum step size determined this way,

the assertion of some reliability engineers that "there are no cliffs" in

hazard functions and other reliability measures is given a precise mathe-

matical interpretation.

In summary, although the maintenance policy designer has little

information at his disposal regarding the precise nature of the mainte-

nance/failure cost surface, creation of an iterative minimum-seeking

policy only requires enough information to identify downward-tending

directions in the neighborhood of an existing policy, and to establish

an upper bound for step size in order to avoid overstepping.

, It'is generally impossible to adequately test most large-scale

complex systems because so few replicas are built and the time needed to

test one system at the desired confidence level' often approximates the
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expected lifetim• of the system-.ty -. prior to obso1esce nc F_ Siple

systems are also subject, to the .l.zteý. prob.-Aem if high reliabiliy is

Jehnded and tec rno!ogy is. rapidly varying,. For6'Tnsta'nce, MIL-ST•-690Ai,

"1 Lf6 Test Sarippling Fror.edurcs for Establishpd Levels Of"Reliabllity. and,

Conf'idence i-n Electronic Part.Specifications," proposed 'in .1965, required

zero teat lailuares in 230 millicn part ours to meet a standard 6f O.001%

failures. per thousand hours at the 90% confidence level. Testing as

"nny as .C,000 )parts simult.aneously would -require 4.5 years of, teating.

24' :urs pet day. But r'ecent electron-ic technology has been consistently

underg61.g'major revolutions at intervals of approximately 5 years. We

must conelude that a product:which has been adequately tesced accordinR

to conVentlona. stai•.ards may be obsolete by the time it satisfies the 4

testing criteria. Taus, c cmplexity of equipment and high performance

requiremenLs conspire to eliminate the possibility of observing the

eurvivai cnaracteristics of system replicas in sufficient quantity for

scatistical anaty-i-i of saraple variation to be a vAluable guide.

Alkhough It is common to view statistics as an anal-tical arsenal

for the descr'tpti)r' of obsetved variations in large samples of homologous

.i;'r, ;u.bjerUtd to similar environmental stresse , there i3 another, more

profound, vie.v introd4iced Into statistical vechalcs by J. Willard Gibbs.

Prior to Gibbs,.the, applicatlnt of statistical methods to the study ýf
hysicA3 reality was beset with .philosc\phicsl problems arising from the

irrefutable observacion that there isibut one universe, not a s le of
universes che variation of whose pýoperties statistics would describe.

It was Gibbs who conceived the fruitful notion of a virtual ensemble of

potential universes upon which statistical analysis acted to select one

- the one that exists - as a kind of solution toga variational problem,

the problem of maiximizing expectation. , In this way statistics is applied

as a cardinal ,'ýinciple in our model of nature, on somewhat the same

footing as ',ewton's Laws, to determine which among the conceivable

universes shall occur; it is not a descriptive tool to provide a measure

of observed variation. Elevated to a principle, statistics nevertheless

cannot detcumine the cours cf nature withouc a4ditiofial information,

-just as.application of New on's Laws requiris knowledge of the appropr;Late

force functii,.
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The statistics of traditional reliability theory has few points of

contact with the Gibbsian interpretation; it is woven together with

product sampling and age exploration. When these are not possible, when

the system is complex, unrepLicated, and rapidly becomes obsolete, then

application of statistics as a means for the analysis of variation must

yield to the Gibbsian role of statistics as a selection principle.

These remarks neither solve any'problem of reliability nor yield

profound insights. But they perhaps suggest a philosophical foundati6n

upon which an acceptable theory'of the application of statistics to the

reliability of complex 'systems can be developed.

SRecalling the ideas and notations of Section 7.2, we recognize that

the step size used in implementing the Reliability-Centered Maintenance

Program depends on the policy selected and also on the time of selection

of the policy. A point on the maintenance/failure cost surface S . cor-

responding to time t is specified by the policy parameters, which will

be collectively denoted by p(t), and the corresponding cost, say

C(t, p(t)). Thus the corresponding point/on S has coordinates
t

(p(t),'C(t,p(t)); and,:when it is considetad as a point ?n the full policy

surface- S, its coordinates are (t,p(t), C(t~p(t))) with time jas an

explici't variable. Selection of a step is'the same thing as selection of

a pair of points on S, say (t',p'(t'), C(t',p'(t))) and

(t",p"(t' ), J(t",p"(t"))). The time variable plays its usual distindtive

r~le since it is subjert to unicursal variation: time always increases.

This implies ;hat of two applications of the minimizing maintenance"

policies (I) - (111) of Section 6, one will always be antecedent to the

other; we can suppose, without loss )f generality, that t'< t". It maY•

happen the policy p remains unchaoiged from t' until t": that is, a

review of poliry may not bring forth sufficient reasons to implement a

policy change. The process of rpview, and the process of implementation

of a policy change, may be costly, which is an inducement to extend the

interval t"-t' between successive reviews or changes as much as possible.

Counterbalancing this argument is the possibility that a review will lead

to a substantial cost decrease, i.e., that there will be sufficient

information to enable the size and direction of the next ste' in the

so



iterative minimization procedure to be determined. I.itr Nht- reasons

the problem of determining the step size in the time varia~ne, that is,

of determining the' interval t"-t between successive applications of

the policies (I) ' (III) to the system, assumes a particularly signifi-

cant role. An intensively studied special case of this problem is con-

cerned with the extension of Hard Time replacement intervals for equip-

ment as experience accumulates.

Determination of the optimal intervals for application of the

Reliability-Centered Maintenance Program policies appears to be a particu-

larly difficult problem, depending as it does on both the conversion of

operating experience into information about the survival distributions

of the elements of the parti. ±on of the system, and on the effect this

information should or would have on those who bear the responsibiltiy for

making policy changes such as increasing replacement o. inspection inter-

vals. We have already noted that larger than optimal step sizes can

lead to wild oscillations in maintenance/failure costs and to an incceas-

ing number of critical failures, whereas smaller than optimal step sizes,

which can also be called conservative estimates, merely reduce the. rate

of approach to the optimal policy. This is a persuasive argument for a

conservativre implementation of a maintenance program. Excessive con-

servat.lsm, \however, is often too costly and retards the evolu Lon o

related systems. It is therefore worthwhile to try to formalate the

dctAsion pi-ocess in'a manner 'irhich makes it subject to analysis.

One way to formalize thia problem of interval determinat•n is based

upon its connection with information theory. Let t 1 ,t 2 ,...,tn be a.anI
sequence of inspection or replacement times for samples of a type of I4
item. Let R(t) be the observed survival distribution and U the.

univer&e of sample items. If EsU is an item, it will age and finally

fail. at some time t(O). Let

w(ti) =* : ti_ 1 c_ t(&) < ti} , i=l,...,n, with t0=0 (7.2)

that is, let w(ti) denote the set of items which fail before the ith

inspection but not before the (i-1) inspection. The sets
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{ci(t):i12,..n) V.~ constitute a partition of U. The probability;

that &eib(ti is RVt~ 1  R(ti) The information associa'ted with the

partition is (.cp.[2) [1.1))

Passing to c~ontinuous variables, this corresponda to (cp'. [li])

I -Q f0 P (t)log~ p(L)dt(74

Note that the information defined by eq. (7.4) depends on the coordinate

system; it is not independent of transformati~ons of the time variab3'.,-

among which selection of zero time is includad. In part~cular, the'

information corresponding to a continuous survival probability density

may be negative. Information differances do hav~e absolute meaning,

independent of coordinate transformation~s. srialpoablt

It ca eslownthat. among all differentiable sria rbblt

densitites !.qhic>,- ihave the same, mean tiawi, before failure 4,

T 1 tp(t)'dt 7.6
Jfo

the exponential survival distribution', for which

p(t) = exp (-t/T) *(7.6)

maximizes the information eq. (7.4). A simple calculation shows that in

this case

I = + log e T. (7.7)
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The information corresponding to the expc'aientral distribution and

inspection ,Intervals of equal duration can be easily calculated. LEt the.

inapeetiot times be

t!:'iqT -, .1.-0,1,. (7.8&1

wbere T denotes the mean. time before failure and q is a positive

constant. The inspection intervals have common duration ti ,- t AqT,

and the survival distribution is given by eq. (7.6). From the formulae

Sx
X = -

1-1X

and . ixi-.S(l-x) 2

each valid for -1 . x < 1, we find, from eq. (7.3):

S'I I(q) " (iq - -(i+l)) log e'-(,i )q)

. II
i' , (l ."q) qieiq _ .. e -leq) eiq

-Leo 1 e
eq~l .~

As the inspection interval tends to zero, the discrete formula eq. (7.3).

does nOt pass over to formula eq. (7.4% corresponding to the inforVatidh .

associated with an absolutely'continuous distribition, so one should

not expect that lim I(q) -ill reduce to eq. (7.7); instead we find'

.- 3.



r ,<••, T• = '• •• i • •' -•' , - - - -,, -: .. - .... .- - , - . .... ~ -• -..

I(0)' lim I(q) - (7.10)
q+o

periodic inspection with zero interinspection interval produces iufinite

information for the exponential distribution. At the other extreme, if

there are no inspections, which is equivalent to the condition that q

is infinite, then I
1(-) =lim I(q) =0 ; (7.11)

qým +

the information gain is zero. These calculations agree with our' intuitive

assessment of the situation.

I(q) decreases from infinity to zero as the interinspection interval

increases from zero (continuous inspection) to infinity (n'o inspection).

For inspection intervals equal to T we find

1 i loe(

I(1) -i e l e( ) = 0.750+ (7.12)

Our objective is to determine inspection intervals so that there is

some desired relationship between them ari the c9rresponding measure of

inforttat!.on.

'ie:Lslaton!4tvt tl~t2 . ,l *. give an4iet itbe
•e , odetermine tn Moreover, consider further inspection times

+ k-l,2,..., corresponding to equal inspection intervals

tn+k+1 tnIt qT, k-1,2,... (7.13)

we will iater: let q approach infinity, and #t will follow from the

calculations previously given that the information corresponding, to the

latter intervtls will be zero. The information corresponding to the

partition induced by J{tit 2 ,...1 is

SI Piloge Pi (7.14)
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where we have abbreviated

Pi R(ti1- R(ti (7.15)

If the desired relationship among the intervals is that each inspec-

tion interval produces the same amount of information, then the condition

is

SPlogeP? const. FPllogeP

for all i. If the survival distribution is exponential and the first

inspection time is t1 , then t 2  is determined by the equation

( 1- t og( - e (7.17) /

-l e )log e -1-t /T- e-t2/T~l~ (tl/T- -t2/T i

This is equivalent to an equation of the form
4

(- e-X)log (1- e-x) = const. , (7.18)
e

where x-(t 2-t 1)/T, and can be solved by numerical methods.

The left s, de of eq. (7.17) is known from observations obteifed:

through time t 1 . By monitoring R(t) throuighout the interval "t, < t,

.One can always calculate "hen the incremental information satisfs•as- I
eq. (7.16);, ;which 4stablishes t2  and the successive intervanlee 'I -

. In gener4•; Sf th're ik infaut mortality, then t2 -t 1 > it will

take longer to acquire additional informatiot about the -urvival distribu-

tion after the epoch of infant mortality has been outltved. Similarly,

should a wear-out period exist for aged items, inspection intervals

established by the principle of equal, information will be comparatively

shortened to compensate for the increased hazard rate. iHowever, the

reduction may have a negligible practical effect because there may be too

* few items surviving until advanced ages to significantly affect total

Sfleet maintenance cost. This is in accord with experiance.
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The polcy .outlined above responds to failure; cp. Chapte'r 6.

As items in the initial inventory fail, they may be renewed aud

returned to service, or replaced by new items of the same type, Additions

to the operational inventory of items may also be made at various times

and in varying quantities. As a consequence, the oldest items in opera-

tion are likely to constitute only'a small fraction of the "fleet" even

if the failure rate is low.

Additions to the operational inventory and renewal of failed equip-

ment creates complex, unpredictable, and continually varying age distribu-

tions. Figure 7.1 illustrates an age distribution, with each.renewed I
item returned to service treated as distinct from all others, including

its pre-failure form. t is a measure of operational time and tchr~ n

denotes chronological time. The total operating time until failure of

item i is denoted by ti. In this figure, item No. 4 migh- be a

renewed version of the failed Item No. 3; No. 5 is a non-initial

acquisition which has not failed during the span of chronological time

displayed in the figure.

Item No. Chronological Time tchwon

1 . ' "Faileed

3 led4-- i4 Fie

Figure 7.1. An Age Distribution- Chronological 'isplay
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If the information provided in the -figur -is, displayed' t1r ts of

operating time t, then it c^,h be arranged as. shown in Figur6 7.2.

item No. Opertional Time t I
5 Not FoIed

2

6

4

3

Figure 7.2. An Age Distribution - Operational Display

The survival distribution R(t) can be estimated' from this data

for all t not greater than the operational age of the oldest item in

service. -If failed items are renewed and returned to service, the sample

size for estimation"of R(t) for small t will generally be significantly

llarger than the total inventory of items since given renewed items share.

multiple: operating histories. Since an estimate of 1(t) is given by the

fraction of items surviving until t, as experience accumulates, renewed

items are returned to the operating inventory, and new items are acquired,

-the estimates of R(t) for smallt , .can be repeatedly updated. As data

accumulates, the estimates of R(t) will stabilize; thus, replenishment
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at epfsmIsmn•f the operating inventory ouly act to. rWine, the astimate

of R(t)_ and. redure its.Var=ance., Since the failure information measure

I of eq. (7.3) is completely determined by R(t) sad the inspection

intervals, it follows that the estimate of I is independent of replen-

ishmant and expansion of the inventory except that as chronological time

passes, the estimates of I for small operating times become increasingly

reliable.

.. -
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GLOSSARY OF NOTATIONS AND TERMINOLOGY
Notations

4 Set membership symbol. For 'x t S' read 'x is an element

of S' or 'x belongs to S1.

SU, Set union symbol. SUT is the set whose elements belong to

at least one of S and T.

ln, (�h Set intersection symbol. S AT is the set whose elements

belong to both S and T.

- Set difference symbol. S - T is the set whose elements

belong to S but not to T.

C Set inclusion symbol. S CT signifies that each element of

S is also an element of T.

9 Empty set.

YX(t) Maintenance/failure cost density of element X of a parti-

tion A of system S with respect to the failure distribu-

tion F (t); eq. (6.7).

S(x) Dirac delta (generalized) function; eq. (2.27).

rT(t) Hazard rate, also called failure rate; eq. (3.14).

Typical element of the partition A of system S; eq. (6.2).

A Partition of a system S; eq. (6.2) and Figure 6.2.

1A Typical element of the partition M of system S, where

M is a refinement of A; Figure 6.3.

M Partition of a system S which refines another partition

"A; Figure 6.3.

P(t) Failure probability density; eqs. (3.8), (3.9).
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PX (t) Failure probability density of element X of partition A

of system S; eq. (6.6).

Event in a measurable space; eq. (2.1).

W(t) Set of items which have failed prior to time t; eqs. (3.1),

(7.2).

0 Collection of events in a measurable space; eq. (2.1).

cA(t) Cost density with respect to time, corresponding to cost

function C (t) for partition element X; eq., (6.4).

c (t) Imputed cost density of failure of partition element A.
per unit hazard rate of X; eq. (6.6).

cXi(t) Cost density of maintenance of partitionelement X cor-

responding to inspection time ti; eq. (6.5).
c (•) Indicator function of event w; eq. (2.7)...

C(t) Maintenance/failure cost function for the complex system

1; eq. (6.8).

CX(t) Maintenance/failure cost function for the element X of

partition A of the complex system S; §6.3.

F(t) Distribution function for failure prior to time t; eq. (3.5).

FX,(t) Distribution function for failure of partition element A

prior to time t; §6.3.

F(W(t)) Probability of failure prior to time t; eqs. (3.3), (3.5).

I(q) Information corresponding to an exponential survival

distribution and inspection intervals of duration 4T with

T the mean time before failure; eq. (7.9).

T(n) Information corresponding to discrete partition Q; eq. (7.3).

p(x) Probabit1ity density function corresponding to the probability

distribution P - Pf of the random variable f4 The random

variable is usually suppressed from the notation; eq. (2.18).
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P Distribution function of a fixed random variable (not

indicated by the notation), relative to the probability

measure P; eqs. (2.12), (2.13).

Pf Distribution function of random variable f relative to

the probability measure P; eq. (2.12).

abs
p Absolutely continuous distribution function; eq. (2.16).

p dis Discrete distribution function; eq. (2.16),

}: s ing
p Singular distribution function; eq. (2.16).

P Probability measure; eq. (2.1).

P(w 2 1w1 ) Conditional probability of event W2 given event w

eq. (2.35).

R(t) Distribution function for survival until time t, also

known as the reliability; eq. (3.6).

R (t) Distribution function for survival of system S until time
S

t; eq. (6.3).

R (t) Distribution function for survival of partition element

X of S until time t; eq0 (6.3).

O(w(t)) Probability of survival until time t; eq. (3.2).

Ia Set of real numbers.

S Maintenance/failure cost surface; eq. (7.1).

S Maintenance/failure cost surface for time t; eq. (7.1).

SS Set of items which constitute a complex system; eq. (6.2).

T Mean 'time before failure; Figure (3.3), eq. (7.5). "1

Terminolo&y

Bathtub curve - Typical shape of A hazazd function graph; Figure 5.1.

Bayes' Principle of Inverse Probability- Figure 2.6, eq. (2.39).
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Condition Monitoring - Ono of the three primary maintenance processes,

consisting of no scheduled preventive maintenance. Condition

monitoring depends on tha surveillance-and anulysis program for

data collection and data analysis, upon which judgements can be

made relative to w•intaining items; see [6).

Conditional probability - eq. (2.35).

Conditional probability of failure - eq. (3.13).

Distribution function - eq. (2.13).

Event - eq. (2.1).

Exponential survival distribation - §4.1

Failure probability density - eq. (3.8).

Failure rate - Saae as hazard function; eq. (3.14).

Gamma survival distribution - 14.5.

Hard Time - One of the three primary maintenance processes, requir~ng

fixed-limt removal for overhaul or time Pkaits; see [7).

Hazard function - Same as failure rate; eq. (3.14).

Information - A measure of the organization of elements of a set associ'- '1
ated with some partition. Modern Information Theory was developed

by Claude Shannon in connection with communication systems during

the 1940s. Soon thereafter its relation to older ideas in statis-'

tical mechanica and statistics was recognized, and its fundamental

role throughout the physical sciences was elatorated in numerous

articles and books, among which those by L. Brillouin and

E. Schroedinger are particularly worthy of mention. Measures of

information &re now systematically employed in fields as diverse

as linguistics and psychophysics, biology and physics, coamtnmiciw

tion engineering and library science. Although originclly coa-

ceived in the context of transmission of sequenceo of sytbol':

*rawn fromea finite inventory with fixed probabilities, the cotI-

sept of information is mo:.: genera.1 and can be associated with any
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partition of a finite set, and in certain instances with infinite

seats a. well. See [61, especially eqs. (7.3) and (7.4), and

references (21, [11].

Independent random variables - 62.4, eq. (2.33).

Lebesque-Stieltiee ite ral - U2.3, eq. (2.22)-, See also (1,2] for a move

general and couprehensive deveS.LPuent.

Likelihood ratio - eq. (2.39).

Lognormal survival distribution - 54.4.

Maximum-likelihood method of estimation - eq. (2.40).

Normal survival distribut itdn - &4.2.

On Condition - O)ne oI the thre p•im•ary maittenance prucesses, requiring

repetitive inspectioas or tests to determine reducad resistance

to failure for specific faiLure modes.

Probability ila.nity function - eq. (2.18).

Proba1.tty (Y( falure- 53.1.

Probability oZ st-rvival - eq. (3.Z).

Rlanauu variable - Partgraphs follow-ing- q. (2,3) and Figure 2.2.

Weibull survival distributiot- §4.3.
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