L ey A AT AT NIRRT TR A Hpnaaa e . e e mesarn s s

MATHEMATICAL ASPECTS ‘ }
OF

r
) E

RELIABILITY-CENTERED MAINTENANCE

DAQ 66580

A

7
¥
E
%
}
3
v
;
f
3

i
{ ]
; H, L. Fesnikotf,
EI h
g R & D Consu'tants Company ‘
;; i
-. |
i{ 3
1
:
,4
" .
“ RERODUCED BY -
' NATIONAL TECHNICAL
1 INFORMATION SERVICE
' U.3. DEPARTMENT OF COMMERCE
s SPRUCFIFLD, YA. 22161

 DRTABEION FTATEHENT A |

Approved for public releass)
Distridbution Un)imit_e_-d




;
|
|

T~

TN >

T I T R

T T T

NOTICE

THIS DOCUMENT EAS BEEN REPRODUCED
FROM THF BEST COPY FURNISHED US BY
TEE SPONSORING AGENCY. ALTEOUGH IT
1S RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSISLE.

P .

et -

St e ke g, . e




TR N TSR T TP RN OrTT . e RN Ll mwww*vw:w‘mr e L

;
y
3
i

e e T T = e V .!

MATHEMATICAL ASPECTS
-_— -

© e g i

OF

——

{ _Beunsauw-‘gemsneg; MAINTENANCE

s i ———
PRy
e = e g i e Bttt

o £ .

ey |
“/ H. L.{Resaikoff//
“ 713 4 j

e T TR Y TR T T
e

R& EComul ompany ) : ‘l

Conteact No FIDAGP3- 7{>_':C..‘T,E§—‘?‘7[ p !

{5 € A G mincses

,
]

)

h
g {

] ;
-. i

.'3

5 5

9 *

§
Los Altos, CA: Dolby Access Pross, 197 -

/
STATEMENT A
Approved fo: public raleacs;
Distribution Unliir
S TR

& R LT -
far oA i kot 5o aema 1AL -




P AT G R P ERTTTIRTRON e T R a e

W TR T RS ST JT T R, T ey e

S e e VA Tt S A AT AT TR he 1

| S

§1.
- §2.
§3.
§4.
§5.
§6.
§7.

TABLE OF CONTENTS

Introduction........... e et et te ettt e e 1

Elements of Probability ..................... SR .. Ceer e 10

et T KU, T TR

o gl (™

Terminology of Reliability Theory ... .......... et e 27
Useful Survival Distributions ............ ... . ... i, 35
Simpleand Complex Systems . .. ............. ..., e 53
Reliability-Centered Maintenance . . ........... ... it innnnnnnn. 59
Information and Maintenance Progranis . . ..........c.i ittty 75
ReferenCes ... ..ottt ettt e e ... 89
Giossary of Notations and Terminology .. ............ e | 91

L.
D AP B S T v 7 SR

Y R T A T

s lons il Skt

e ot gl




T

g

T b e o

\ 1. INTRODUCTION ‘
! |
L.l The main purpose of this appendix is to provide a mathematical
description of the Reliability-Centered Maintenance Program)developed
by Unitéd Air Lines and described in-[6} and [7]. GAlthough a mathe-
matical formulation may not make it any easier td implement this program,
. by placing it in a broader context we hope to emphasize the generality
of its underlying principles and encourage their application to complex

systems other than commercial air fleet maintenance operations.

Another purpose of this appendix is to provide a brief but coherent
introduction to those aspects of the theory df probability necessary for
an understanding of the theoretical basis for the Reliability-Centered
Maintenance Program. This account differs appreciably from the presen-
tations usually found in textbouks on reliability theory: standard
treatises concentrate on the functions assuciated with reliability and
on their analytical manipulation. Here we focus on the underlying sets
of items and events and on their mutual relationéhips. There are two
principal reasons for this difference of approach, a difference which
is in large measure fundamental to the philosophy underlying Reliability-
Centered Maintenance. . _

The first reason is that collections of operational commercial and
militar& gas-turbine-engined aircraft are among the most complex systems
evolved by civilization. A single aircraft consists of tens of thousands
of interrelated parts whose integrated and harmonious operation is neces-
sary for auccessful completion of the aircraft's mission. These consti-
tuent parts, assemblies, and subsystems exhibit every extreme and inter-
mediate aapect of reliability behavior. For this reason alone--complexity
due to divergity--there can be no hope for a complete analytical descrip-
tion of reliability properties which could form the basis for developmenf
of an optimal maintenance policy. Aircraft, and aircraft systems, consist

of sets of constituent parts--sets having a large number of elements,
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sets whose elements are related in complicated ways. Consequently, our
_ attention must be primarily (although not exclusively) directed to con- |

. sideration of aircraft and aircraft systems as sets.

The second reason is more subtle. It has been said that the

o Ay e

; principal problem facing the designer of a maintenance policy fqr'air-

craft operations is one of information. - It would be more accurate to

AW T

assert that the problem is ore of lack of information. One of the most .
important contributions of the Reliability-Centered Maintenance Program

is its explicit recognition that certain types of information heretofore

actively sought as a product of maintenance activitiés are, in principle

AN T R L T
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.as well as in practice, unobtainable. The twentieth century has iden-

tified uncertainty as a fundamental principle on whose shifting sands
profound and powerful theories have been erected: G8del's Incomplete-

ness Theorem in mathematical logic and Heidenberg's Uncertainty Pfinciple

Ll
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in quantum physics stimulated rather than stifled progress, the spawn of

the latter incluyding.microelectronics as well as nuclear science. The

R s s

Reliabllity-Centered Maintenance Program extends these philosophical

views to reliability engineering by elevating. the unobtainability of i
information to a positive principle. This is a consequence of the fol-
lowing observation: the only information-bearing events which are of

ultimate significance to the aircraft maintenance policy designer are
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ggilﬁres, and among these the critical failures bear the greatest amount

of information. Thus, the task of the maintenance policy designer is to i

minimize informacion. In most other comparable circumstances failure i

1 information is avidly_sought, through prototype testing and sampling

A s

procedures, but those traditional approaches are inapplicable here.
Fleets consist of a relatively small number c¢f aircraft which are in a
continuous state of evolution and modification and which are brought

into operation in a serial rather than simultaneous manner. Hence sample
sizes are ggnefally too small for statistical procedures tc carry much

conviction, and for the ieading edge of high-time aircraft they are ?

T T T

always too small. In such an environment actuarial procedures are of 1
relatively 1ittle use because the operating lifetime of an aircraft (in
a fixed configuration) is relatively brief. Actuirial analyses provide
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interesting historical information about the effectiveness of aaintenance
policies and design features, but they cannot be a basis for maintenance

policies.

Acquisition of the information most needed by miintenance policy
designers--in“ormation about critical failures--is in principle unaccept-
able and is evidence of failure of the maintenance program., Critical
failures entail potential (in certain casea,-proﬁable) loss of life, but
there is no rate of loss of life that is acceptable to a common carrier
or military organization as the price of failure information to be used
for designing a mainfenance policy. Thus the policy designer is faced
with the problem of creating a maintenance system for which the expected
loss of life will be less than 1 over the planned operational lifetime
of the aircraft. This means that, both in practice and in priuciple,
the policy musi be designed without using experiential data which will
arise from the failuree the policy is meant to avoid.

Maintenance policy designers do have the advantage of experience
gathered from operation of previous generations of aivcraft. Although
those aircraft are different, both in the design and fabrication of many
of their constituent parts and in the relationghips among those parts,
it is nevertheless true that many constituents are unchanged, and most
changes are minor and evolutionary rather than revolutionary. Thece is,
consequently, a certain continuity from one gencrafion of aircraft to
the next which is utilized in an informal way by experienced maintenance
engineers and aircraft designers. Althcugh it is difficult to formulate
this aspect of policy design in mathematical terms, the theoretician
should not be deterred from the task because prior experience is probably
the major single source of information which can be used for maintenance

" policy design.

»

In short, maintenance policy design is a problep »f information and
of statistics. N. Wiener [15) and A. N. Kolmogorov (5] were among the
first to recognize the close relationship between statistics and infor-

mation, particularly with regard to communication theory. C. Shannoun {11}

expanded and developed their ideas to creste a rigorous and useful in-
formetion theory. The application of Shannon's theory to maintenance
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policies requires that both of the concepts of information and reliabil-
ity be formulated in terms of the structure of the sets of conatituents
of aircraft, and of functions defined on those sets. Again the desira-
bility of a set-oriented presentation of reliability is underscored. '

1.2 We will susmarize the contents of the subsequent sectiuns. Sec-
tion 2, Elements of Probability, introduces the basic concepts and

rélationuhips employed throughout this work. The notion of a measurable

space, which consists of a set whose elements are the items of interest,

a distinguished collection of subsets called events, ard a probability
measure which measures the likelihood of an event, is central. - Random
variables are introduced as functions defined on the set of items and
compatible with the structure specified by thie collection of events.

The distribution function associated with a random variable and proba-
Bility measure is often the starting point in treatments of reliability
theory. This necéésitates a brief description of the three possible
types of distribution functions. The remainder of the work is restricted
to distribution functions which are linear combinations of absolutely
continuous distributions (that is, those which ha ~ a corresponding
density function) and discrete distributions. The diacussion and nota-
tion are arranged in a sufficiently general manner to permit a unified
treatment of both types of distributions as well as combinations of them.
Combined distributions are not merely academic curiosities. Whenever a
system is operated continuously over a period with numerous brief (dis-
crete) intervals of peak stress having special characteristics, its
survival distribution will be a linear combination of &n absolutely con-
tinuous distribution corresponding to the continuous mode of operation
and a discrete distribution corresponding to the peak-stress operation.
A tungsten-filament light bulb provides a simple example. When operated
continunusly its survival characteristics are re’'sced to continuous
filament evaporation. When the controlling switch is first turned "on,"
the cold filament is heated rapidly and undergoes thermal stresses.

These loads evidently depend on the history of the switching activity
and yiald a discrete distribution. Similar phenomena occur in aircraft
operation, particularly in hot creas of gas turbine engines. '
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These circumstances demand consideration of the Lebesgue~Stieltjes
integral. The latter is not as ccunphly used in the literature as it
should be. We present a brief and, ve hope, readily accessible defini-
tion of this integral and description of those properties needed for the
applications. The discussion is based on the integration-by-parts

formula familiar from elementary calculus.

The derivative of an absolutely continuous distribution is called
a density function. For instance, the normal density function is

75:'9'*t2. Discrete distributions do not have derivatives in the ordi-
nary sense, so it is not possible to unify the treatment of densities of
combined distributions without generalizing the concept of functiom.

The required generalization is the generalized function known as the
Dirac delta function, long used by engineers.

With these preliminaries in hand, conditional probabilities are
defined and Bayes' Principle of Inverse Probability is introduced.
Bayes' Principle is a consequence of a certain symmetry of roles played
by observations and hypotheses, a symmetry most readily made e§ident by
the set-theoretic formulation of these concepts. This symmetry, and
Bayes' Principle, are of special importance to us because they provide
the formal mechanism for the conversion of prior observations, e.g.,
survival data for constituents of a currently cbsolete aircraft, into
current hypotheses, e.g., initial specifications for hard~-time mainte-
nance. This application of Bayes' Principle is taken up in Section 7.

Section 3, Terminology of Reliability Theory, applies the general
development of the previous section to the particular circumstances of
reiiability problems. The main features in this application are two:
first, time t 1is a random variable, and the events are puinuctcriaod
by t; and second, the event associated with t is interpreted as the
set of ftems which fslled prior'to t. Failure and survival distribu-
tions are introduced, and it is shown how to calculate the mean time
before failure. Failure density is defined and used to introduce the
important concept of the hagard rate, also known as the failure rate.
The hagzard rate has two useful properties. The survival distribution
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can be exprass~d in terms of the hazard rate. Moreover, the hazard rate

P of a collection of independantly failing items is the sum of the hazard
% rates of the individual items.

Section 4, Uzeful Survival Distributions, introduces five survival

distributions which appear frequently in the literature: exponential,
normal, Weibull, lognormal, and gamma.

In each case the corresponding
density and hazard functions are displayed. The survival characteristics

of various jet engines or their subsystems are often accurately approxi-

i
3
1

- e TR

mated by one of these distributions. An exauple of such an application
is supplied for each one.

o

The exponential Jistribution plays a unique role among survival ’

distributions. Since its hazard rate is constant, it separates the dis- ‘ : ]

tributious which have increasing hazard rates from those which have de~

creasing hazard rates. Thus it also separates two fundamentally distinct
clagses of maintenance policies, since in the former case replacement of

old by new items reduces failure rate and can, under certain circumstances, 3
be cost-effective, whereas in the latter, replacement of old by new is .
only reascnable after failure.

YT T AT e Coam

Section 5, Simple and Complex Systems, considers infant mortality

3 and wear out as components of the general nazard function. Simple systems,

am T i i s il

1 consisting either of one cell or of symmetrically interconnected replicas

U W TVROgE -~ P

of one cell, are contrasted with complex systems. The principal conclu-

1 sion is that complex systems are not amenable to complete mathematical i
‘ reliability analysis. i

: Section 6, Reliability-Centered Maintenance, is the heart of this ) %
paper. Mathematical reliability analysis of an aircraft is impossible
because the latter consists of tens of thousands of diverse parts. The

United Air Lines Reliabllity-Centered Maintenance Program presents a _ i

method for grouping parts snd avsemblies into functionally related sub- %

. systems and systems, and for systematically eliminating certain of them %
F from maintenance policy considerations. The purpose of Section 6 is to

repraesent this procedure in mathematical terms.
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The collection of types of items whi_h are part of an aircraft 1is i
considered as a set with an associated survival distribution. This set
is partitioned into maximally independent eleusnts which loosely corre-

1 spond to the partition described in the Reliability-Centered Maintenance
E Program. To each independent element is assigned a cost furction which
includes the direct and indirect estimated costs of a failure in addi-
tion to the costs associated with the maintenance program under consider-

Ty e

ation. The objective of the maintenance program designer is to minimize i

o

the sum of these cost functions.

Although this minimization problem is too complicated to admit a
purely mathematical solution, it is nevertheless arranged in a form which
makes it possible to recursively and systematically revise the maintenance

e - o

PTG e e ey

policy so that total cost is reduced by each revision cycle. In fact, j
since the cost function is the sum of the cost functions associated with i

the elements of the maximaliy independent partition, it follows that any
policy modification which reduces the cost function for one independent
element while leaving the maximally independent partition unchanged must
necessarily reduce the total cost function. Hence, iteration of this

T T e

e D A Y

procedure of lcocal cost reduction without chang’ng the partition will
lead, in the limit, to a local minimum of the total cost function. There :
- is no way to prove that this local minimum will be the global minimum,

o e ey
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3 nor is there as yet an analytical way to estimate or speed up the rate
of convergence to the local minimum. Nevertheless, this procedure, ;
which reflects the essence of the Reliability-Centered Maintenance Pro-
1 gram, assures the maintenance policy designer that the program is self- : {

1 improving.

The section closes with presentation of a geometrical model of the
? Reliability-Centered Maintenance Program. The maintenance/failure cost
function, considered as a function of time and the policy parameters,

defines a surface in a multi-dimensional space. The program definas an’

iterative procedure for locating a local minimum (as a function of time)

on this surface.

Section 7, Information and Maintenance Policies, returns to the
theme discussed earlier in this Introduction, that the most important

7
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information avajilable to the maintenance policy designer is provided by
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failure experience. The desigher cdnnot plan on the availability of :
such information. Three aspects of this problem are discussed in Sec- :
‘ tion 7. First, the geometrical interpretation of the Reliability-Centered
Majintenance Program presented at the end of Section 6 is elaborated in
order to show why that program can succeed using only the small amount of
information which is actually available. In essence, the program seeks
valleyq on the multi—dimgnuionll surface defined by the maintenance/

T

e
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pr

failure cost function. It achieves its objective by identifying a
direction of decreasing cost on the sutfgce at the point corresponding ﬁ
te the maintenance policy in effect, and then moving along the surface
(i,e., modifying the policy) in that direction. If the distance moved
is sufficiently small, iteration of thi; process converges to a valley

peint on the surface, that is, to a local minimum of the cost/maintenance
function. The central fact is that relatively little information is
needed to determine a direction of decreasing cost.

The difficult problem of optimizing the size of the policy change
at each iteration of the program is discussed next. More information
is needed tv assess this 'step' size than to merely identify dowmward !
directions on the surface because the former depends on the magnitude of
the derivatives of the functions defining the surface.

‘There follows a brief discussion of the applicability of statistical :
methods to complex long-lived systems having few replicas.’ The physical i

Y T T T

universe itself provides one example of such a systean.  Insofar as
statistical methods are conceived as an analytical apparatus.for describ~
ing sample variation, it appears that they cannot be relied on to monitor
or analyze the reliability of complex systems. An alternative view, s
] based upon GibBs' concept of a virtual ensemble of systems, is presented. ‘ i
. From this standpoint, statistics emerge as a selection principle which
identifies a system among the virtual ensemble of its alternatives
which are compatible with the non-statistical laﬁs of nature. ?

Information plays a cenitral role in the Reliability~-Centered Mainte-
nance Program and also in the discussions presented throughout this
appendix; but especlally in Sections 5-7. In the final subgection, the
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quantity of information associated with a given survival distribution
and inspection intervals is defined ar . then appl-ied to the determina~
tion of the :lnspection 1ntervals such tlat each interval produces the
‘same amount of infomtion. It i found, in agreement with expectations,
that extension of replacemert and/or intpection intervals is justified ﬁ

" during periods of declining hazard rate. ]

A Glossary of Notation and Terminology follows Section 7.
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&:l Theories of maintenance and reliability are ultimately based upon

the theory of probability and on the properties of various distribution

fun:tions which have been found, either through repeated observation and

experience, or by means of theoretical analyses, to occur frequently and

play a role in the description and prediction of survival characteristics.

In this section we provide a brief summary of the concepts and
mathematical structures used in the theory of probability in order to
introduce the notations and techniques which will be used later, and

also to delimit the range of our subject.

Probability theory is concerned with events and measures of the

likelihood of their occurrence. These commonly used words are given

precise meaning by introduction of the fundamental concept of a measurable

space. Let U denote an arbitrary non-empty set and Q a collection of

subsets of U such that*

Jens; (2.1.1)

Wy N - wy)e whenever w,¢Q and w0 ; (2.1.2)
1 2 1 2

;L:lei«fi whenever wyq €Q, i=1,2,3,... . (2.1.3)

The elements of Q are called events. Eq. (2.1.1) states that the set
of U (the "universe" of discourse) is an event; the meaning of
eq. (2.1.2) is indicated by Figure 2.1 below, and eq. (2.1.3) asserts

that any sequence of events can be combined to form an event.

*See the Glossary of Notations and Terminology for definitions of ¢,
N, U, etc. ’ :
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Figure 2.1. Illustrating Eq. (2.1.2) N ) ,

We wish to assign some measuré to the probability“of dcsqrrence of an
event. This is achieved by considering a function

AT S e T R T TR v =
-
-

i e

P:0 > [0,1] - ’ (2.2)

which associates to each event a number between O and 1 inclusive such

% that
E B =1; ‘ (2.3.1)
: &) m) P(wy) (2.3.2)

A AP 2 D A S i, AR o e AL 1 el

whenever the w; are disjoint events, that is, wieﬂ and mir\w = @ for
f i#3. Such a function P is called a probability measure. In order to ' i

emphasize that a probability measure is a function defined on sets ratner

than on numbers, we use bold face type to denote it.

A probability measure is defined on the collection of events ¢,
that is, on a collection of certain subsets of U. It is also important
to be able to consider functions defined on U itself, but not every %
such function can be effectively studied by analytical means, so.it be-
comes necessary to identify a special family of functions on U which .
can be conveniently and effectively studied. . These are called random .

-variables and are specified as follows. : . .

S 3 el S Lk 1t O e £ DL, m R a0

Suppose f:U > IR 1is a real-valued function (see Figure 2.2).

Each real number x can be used to specify a subset w(x) of U by .V !

putting o . ,

w(x) = {reU: £(r) 3 x}. _ ; - (2.4)

11
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w(xy) = {Eey: £(£) < xl}'
w(xg) = {gel: £(&) < xp}

Xy < Xy implies w(x;) Cw(xg)
Figure 2.2. Schematic Diagram of a Random Variable
The set w(x) may be an event, that is, w(x) may belong te . If

w(x) 1s an event for every choice of a real number x, then the function

f 1s called a random variable. The property of being a random variable

depends on the collection of events Q as well as on the particular
function f.

The concept of integration plays an essential role in probability
and statistics, and hence in the thenry of reliability. A random vari-
able € 1is called integrable 1f it can be integrable over the whole'
space | with respect to the probability measure P. The integral is

. understood in the gsense of Lebesgue (cp. [12], {15]). 1In many practical '
' situstions this integral can be expressed in terns of the ordinary Riemgun
"lntegral-and/or a series summation. We will have occasion to say more

about this below.

The 1gtegral of a random vatiable f ovur the whole sphce U with
respect- to the grqbaﬁilitywmeénute P 'will be written

PSR
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s : From eq. (2.3.1) it follows that : o -
: \ - :
g T j:ﬂ.’ =1l. s | | . @8
: | , ' o !
é ; If w is an event, then the function ¢, ‘defined by : ]
i L ) 31 if Eew 2.7 ]
- ‘ C, = i » . 3
E‘ . : ® 0 if Edw é
% ‘ called the indicator function of the event .w, 1s a random variable, and :
g' the product of ¢, f is also a random variable whenever £ is. f
k L-ing this product, we define the integral of f over the event
! o w by | | | b
3 ' ) _ ) b
; - j‘fag - /::mfdg . (2.8) 3
L oy ' ' ' ‘ . 4
3 The integral of the random variable f over the whole space U 1is '
d called the mean value of f or also the expectation of f, and will be ;§
R £
: denoted by E: ?
6 ﬁd? = /fdP : _, ©(2.9) }
b ‘ \ -
Y The number fdP can be thought of as the mean value of f on the g
w ' k
event w. , B
é : The variance of the random variable £ (which is also the square of §
¥ Y R
3 -\ the standard deviation a(f) of f) Is defined by j
: : S . 3
.§" ; o(£)2 = (f - DZ (2.10) 1
S ' ' .
| that is : ‘ ¢
. 2. | i
i o(f) = ﬁf - 't')zdg . . , ‘ o (2.11)
' Notation is somewhat abused in this equation, the nurber f (the mean ‘g
i

j.f value of the random variable f) is used to stand for the random vaxiable
f 1, where 1 1is the rapdpm var;able which takes. on the value 1 for

each element E¢f. : . .f LT
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~ &ad In probability and statistics one is most often interested in tﬁe
probability measure of the set of those events for which a random vari-
able f satisfies f(E) & x for all Eew, where x is some real. number. .
Since f 1is a random variable, wg(x) = {E¢ U: f(g) < x} is an event, 30

by definiticn

Pg (%) -_[ dp (2.12)
£(x)

is a furction of x which varies from 0 to 1. If the random variable
f is fixed for the discussion, or otherwise understood, then the sub-:
script f wil) be omitted and we will write P(x) in place of Pg(x).
This function x + P(x) is called the distribution function of the random

variable f; it is the distribution function customarily used in statis-
tics. In order to emphasize that P is a function of a numerical vari-

able rather than a set function it is printed in ordinary Roman type.

A distribution function has the following properties:
X + P(x) 1is a non-decreasing function; (2.13.1)
P(x) = P(xﬂ) . ' | ' (2.13.2)
"~ where P(x+0) = #Efb P(x+h) (h approacﬁes ]
through positive values; §hus P 1is continuous

from the right);

P(-») = 0, P(+=) =1, ' (2.13.3)

where P(x») = 1im P(x)
X+ too

- We started with a collection @ of sets called events and associated a
probability mearure P with these sets. The values assumed by P are
real numbers in the interval [0,1]. Then we defined random variables
and their associated integrals relative to the probability measure. By
means of the latter we have been able to‘coﬁsgruct an interplay between
functions defined on sets, such as probability measures and random o
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variables, and funqtions defined on real numbers. The distribution

o
1
)
3
\
2
:
n

function Pg: IR + [0,1] provides a method for completing this transfer-
ence by defining a measure on sets of real numbers which will correspond
to P and thereby enable us tb express all of the integrals which occur
in terms of integrals of functions of real numbers, rathef than as inte- '
grals of functions of sets. This 13 important because the analysis of
functions of real numbers is highiy developed and well known. This nice
i property is achieved by defining a measure on IR associated with the
distribution function Pg¢ in the following way.

If (a,b] = {xe¢lR: a< xs b}, then define the measure
bp((a,b]) = P(b) - P(a) , (2.14)

where P = Pg is the distribution function of the random variable f.
Since P(x) = Pg(x) is the probability that the random variable f

ML Th A LA i s el L

assumes a value sx, it follows that up((a,b]) is the probability that

f assumes a value in the half-open interval (a,b]. Mp is a measure on
the real line. The integral of a real-valued function g: IR+IR with ]
respect to this measure is called the Lebesgue-Stieltjes integral of g

with respect to Ups written

+ 00
: /;(x)dup "/ g(x)dPg(x) . (2.15)

Use of the Lebesgue-Stieltjes integral unifies the treatment of

T - TR TR T I T TR R

discrete probability distributions and probability distributions which‘
have density functions. Nevertheless, the Lebesgue~Stieltjes integral
has not yet become a standard part of the education of those who use
statistics nor an explicitly used tool in wmost reference books. This is
no doubt due to the greater technical complications of developing the

] properties of this integrallin the most general setting (cp., e.g. [12]).
Fortunately, for the cases of interest to us, there is a simple way to
express the Lebesgue-Stieltjes integral in terms of ordinary integrals
and to obtain the properties of the former from the well-known propertiea'

of the latter. After some preparatory remarks we will introduce this

15

A N R it

" ottt o o s |

e T ST ST Y

RPIRTT SR DI OL TR0

St L p

[EAPRENS of

L i S,

USRI SR

PRIV, TSP PO S 1% S T SS E




F
%
3
&
3
]
!
F
S

ARV T TSI I T Gy S e oy

oo 5 e

Y

T

sl sl 5 4

approach, which will enable us to simplify and unify our discussion of
reliability.

A distribution function P of a random variable can always be ex- -

pressed as a convex sum of distribution functions of three types:

P= alrab‘ + azpdis + aspsifg , o (2.16)

-
where 0 < a4y < 1 and a)ta,+a; = 1. Pab8 {5 called the absolutely

continuous part of P, P48 45 the discrete part of P, and P8ing g

the singular part of P. The absolutely continuous part Pabs can be
d;fferentiated with respect to x (therefore P&8b8 ig a continuous func-

tion), sc we can write

abs
dPabs = 4P
: dx

dx . : (2.17)

If P = P?bs, that is, 1if the distribution function of the random vari-

able f 1s absolutely continuous, then

dP
dP = d—xdx

and the function

dp

def dx . (that 1is, equal by definition) (2.18)

p(x) =

is called the (probability) density function of the random variable f,

Tne usual continuous distr;bution functions which appear in statistics
text books are absolutely confinuous and therefore possess density
functions. The latter are usually the main topic of study rather than

the more general but more complicated distribution functions.

The discrete part “pdis . of the general distribution‘fggctioh' P
is a step function with at most a countable number of diScdnfinuities;
That is, if the disconfinuities of P418 ,ccur at the numbers Xks
k = ...-2,-1,0,1,2,..., then there are non-negative constants by such
that : o ' B "
PALS(xy\m by Af xS X< Xpqp : T (2419).

where 05 bps1.
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Figure 2.3 gives an example of such a function.

4 .
y y = pdis(y)
1 b——'—-—.———m
——
- = —
—T\A— - --} Bk - Bk-1 " detCx
— {
) ’ i .
e ! L ——l
. ! 0 - x
k-1 Xy

Figure 2.3. A Discrete Probability Distribution

Noticé that sufficiencly far to the left in the figure, Pdis(x) = 0, and

sufficiently far to the right, Pdis(x) = 1; this will occur if ti:e number

of discontinuities is finite. Otherwise, in accordance with eq. (2.13.3),
Pdis need only app;oach 0 (respectively, 1) in the limit as x=+-= .
(respectively, x>+« ). In éhe figure the notation g means that the
left—-hand endpoint of the interval is included, whereas thevright-hand
endpoint is omitted. This means that P4i8 43 continuous from the
right, and is the graphical interpretation of eq. (2.13.2) for pdis,

The quantity )

dis dis .
Cy ™ b, -b _, =P (%) - lim P (%) (2.20)
kK gef K k-1 oy |

is the "jump" of the function pdis for the discontinuity at x = X

The third part of ﬁhe general distribution function, the singular
part P81n8, is of no practical importance. It is & function that is
continuous everywhere and has a derivative equal to zero everywhere ex-
cept on some event (subset) whose probability measure is 0. It is a
remarkable fact that singular distribution functions exist. Such a

‘Afunction Psing is non-~decreasing; P51n8(—aﬁ = 0; and P31n8(+w) -],

17
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which shows that P51n8(x) actually increases a8 x increases; since

its derivative is 0 almost everywhere, PSing is constant almost every-
where. But it is alsc ccntinucus; there are no "jumps." Although func-
tions having these unusual properties can be constructed (cp- [15)),

they are so complicated and pathclogical that they cannot play a role

in practical applications of probability theory. Therefore singular
distributions will be excluded from considerazion in what follows:
hereafter, a probability distribution will consist of a linear coﬁbina-

tion of an absolutely continuous probability distribution and a discrete
probability distribution.

2:3 We are now prepared to express the Lebesgue-Stieltjes integral

B
fg(x)d? of a function g relative to such a probability distribution
o .

in familiar terms. The "integration by parts" formula

] !B R :
fgdP = g(x)P(x) -f Pdg (2.21)
[¢] la o

is valid for the Lebesgue-Stieltjes integral {12]., We will use it to

define that integral in terms of the familiar integral for functions g

-which are differentiable. Thus, if dg/dx exists, define

LB
. fgd? = 2(x)P(x)
a

The integral on the right side i{s a conventional (Lebesgue or Riemann)

R B
- f dg
/ P(x) dxdx . (2.22)
o Ya

integral. All tihe properties of the Lebesgue-Stieltjer integral can he
obtained by interpreting the left side of eq. (2.22) in terms of the
right side.

dis

In particular. if P =7 is the discrete distribution given by

eq. (2.19) and if Xppa1 S 0% Ny Xy CES X4 then

i :
fgdl’dis - E B0 : . (2.23)
a ‘ A .
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where ¢ 1is the jump of Pdis at the discontinuity =x,. Thia formula

is verified by a simple calculation using eq. (2.22). Indeed, since
P(B) = by and P(a) = by.;, by eq. (2.19),

- [8 B B
gdP = g(x)P(x) -fP(x)Egax
o a Q

_ al] .
= bNg(B) - bM__lg(u) —f P(x) %&dx . (2.24)
a

The last integral can be expressed as a sum of three parts (cp. Fig-
ure 2.4):

8 d XM XN 8 i
fP(x)Egdx -f +f +f . (2.25)
a o XM xN

since P41 ig constant between successive discontinuities,
‘ [mpggdx = by (80 - 810) (2.26.1)
fep%gdx - by (8® - 8xp) + (2.26.2)
*N
’ ////////}/& NN\ B
oy | - N \ 6 X
'xM ‘ ‘/r g N
A,

Figure 2.4. Calculation of Lebesgue-Stielties Integrals
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XN - X+l
48 4. . dg
[ Pax 9% x _/ by 4
- xk
' N-1 |
- Ebk(s(xk+1) - 8(xk)) . (2.26.3)
k=M .

Substitution of eq.. (2.26) in eq. (2.24) yields

B ‘ .
-/u‘gdP bNg(B) - bM_lg(a) - bM—l(g(xM) - 8(0))

by(8(®) - 8(xy) - E b (805ap) - 2030)

e
. = - &
= bye(xy) - by, 8y + Q byslx) = D buslxy,)
k=M k=M

N-1 ‘ N .
= byglry) = by 18() + D bale) - Y b 8Gg)

k=M k=M+1
by relabelling the summation index in the last sum),

N
=D by = by a6
k=M
. |
- Z ckg(xk)
k=M

dis

where ¢, =b - b is the jump cf P at x,. Thus the Lebesgue-

k-1
Stieltjes integral with respect to a discrete distribution reduces to
the usual series sum. This means that both absolutely continuous and
discrete distributions can be treated simultaneously -and in a uniform

manner.

Mixed distributions, that is, distributions which have both an
absolutely continuous and a discrete component, are not uncommon. For
instance, the failure dist;ibutiqn for 'li_gﬁt bulbs is of this type.

20
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Another example, more closely related to the wmuin theme of this work, is
provided by jet aircraft engin.s. In particular, the failure distribu-
§ tion of turbine blades can be considered as a combined distribution.

f ' The absoclutely continuous part is associated wtih failures which occur

i as a function of operating time or wear, and the diqcrete part is asso-
ciated with t'e periodic stresses due to rapid temperature changes which

occur in the blades during take-off operations.

|
E Although a discrete distribution does not have a density function, :
i there is the useful notion of a generalized density function which makes !
0 it possible to study densities of combined distribution functions in a ;
! 4
i unified way. We will use this concept in Sectlon 3 and again in Sec- ]
; tion 6, but this is the logical place to introduce it. i
: Let §&(x) denote the Dirac delta function, a generalized function é
i 1
: characterized by the property that if a<xg3<# and g(x) is a function, ]
3 i
3 then ‘ ' |
k 8(x)d (x-xg)dx = g(xg) - _ (2.27) i
: a i
1f ¢y denotes the "jump" in Pdis(x) at the discontinuity x = Xks j
r : " then : §
; A . B N 8 ‘
3 . f g(x) E ckG (x—xk)dx - E ckf g(x)G(x—xk)dx ’
5 @ k k=M @ ;
3 . N i
,. k=M J
: hence, by eq. (2.23), ‘ , g
B B " » |
1 : dis :
/ gdP = f g(x) E ck6 (x-xk) dx , (2.29)
1 : [+ 3 \ Q k , .
| 80 R i
! . dpdis ! :

; = - def E ¢, 8 (x-x,) , . .(2.30)
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can be thought of as the generalized density function corresponding to
the discrete diatribucion Pdis. This extension of the notation of
density function makes it possible to study densities of combinations

of absolutely continuous and discrete distributions in a uniform way.

2:4 The notion of independence of random variables will be of special

importance in what follows because it will provide the means for reducing

complex problems to tractable components. If gi’ i=1,2,... 1is a se-
quence of sets, Qj a collection of events on Ui, Py a probabi’lity

measure on (4, and f4; a random variable on Uy, then the products

U= 91 x gz X wae (2.31.1)
Q=0 x Q% .., ’ ‘ (2.31.2)
P=P xBy X v (2.31.3)

define a collection of events 2 on U and an associated probability
measure P. Notice that P 1is merely a probability measure on sets and
does not have anything to do with a particular random variable. The
random variable f; defined on U; can also be considered as a random

variable on the product set U by defining

fi(gl’ 529"'! Eis"') = fl(gi) . (2‘32)

If f 1is a random variable on U such that its distribution function
P¢ 1is the product of the distribution functions Pfi of the random
variable f; on U, that is, if

Pf(El, *:29-'-) = Pfi({.l)sz({az) e, (2.33)

then' the f; are said to be independeat random variables. If f1,f5,...
are independent random variables, then the mean of f=f;fs... 1is given
by (cp. eq. (2.§))
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that is,  the mean value of a product of independent random variables is

3 the product of their mean values.

2.5 In the theory of reliability and maintenance the notion of the

conditional probability of survival plays a central role. If wy and wj

o oy T

are two events and if g(w1)> 0, that is, the probability of event w;

: is positive, then the conditional probability of wy given wy is
1 ' | | f
3 Pw,Nw,) * ' §
: Plw,fuy) = , . ——o—ie 2 : '
. 1
, If areas of sets are used to represent probabilities, then, in Figure &
? 2.5, P(wy/wy) can be interpreted as the ratio of the area of the region ;
; wpNw; to the area of the region wj. ) ‘
: 4
) 'fg
i B
; :
=; 1
1
, i
3 g
r E
] i
\
3 !
: ]
1 . 3
3
i
} :
§ Figure 2.5. Conditional Probability
:
F
£ ¢
/ Related to this interpretation of conditional probabilifry is the :
3 important Baves' Principle of Inverse Probability. Suppose that i
4 W]sWo,y  are three events in U which have a non-empty intersection. ¢ é
' The situativm is depicted in Figure 2.6. 7
3
» 1
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E
1 = Area (mlnmznma)
i J = Area (wlnwz)
- K = Area "(mzﬂw )
f 3
.
i
:
s
]
3 Figure 2.6. Bayes' Principle

Continuing to interpret the probability of am évent' w as the "area"
; of the set w 1in t. =2 figure, let _
E I = Area 0"1”“’2““’3? g(mlnmzﬂw.3) .
? J = Area (wlnwz)_ = g(mlnwz) '
E K = Area’ (mzﬂw3) = g(wzﬂws) . .

The numerical ratio I/(J+K) can be expressed in two different ways:

I/(J+K) = (I/J)/K = (I/K)/J , (2.36)

L that is,
’ g(m1|w2nw3)/2(mlnw2) = g(m3|wln wz)/g(wznt‘) ,

or equivalently,

P(w,|w, Nw,)P(w,Nw,)
=4"317]1" " "2 &) ) .
g(w1|mznw3) CPGTN) . (2.37)
Y2773
24
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In order to interpret eq. (2.36) in a manner appropriate for our

later needs, we will discuss two types of events: observations and

hypotheses. Statistical inference generally proceeds from a Eollectiog

ATy e

of hypotheses, whose probabilities are assumed known, to assessmeﬁts or
predictions of the probability of various observations. This procedure
can be inverted to provide'assessmehts of the probability of various

hypotheses when a collection of observations is given. Adopting the

it s D g

latter viewpoint, let {wj:ied} be a fixed collection of hypotheses

and set

we= M g | , (2.39)

w 25 the event which corresponds to the simultaneous validity of all

e
-
o

hypotheses w;. Let H denote another hypothesis and ¢ an observa-

tion. Then.eq. (2.37) can be rewritten, using this notation, as

P(o|HNw)B(HNW)
P(aNuw)

P(HlocNw) = (2.39)

w1 T

The quantity g(P|of\w) is called the likeiihood ratio for the
hypothesis H given the observation o .and the fixed collection of

1 : hypotheses {w{:1ied}. The likelihood ratio is proportional to the’
'prohability of the observation given the hypothesis H (and w) multi-
plied by the a priori probability of H (and w). The factor of propor-
‘ tionality is independent of the collection of alternative hypotheses H
under coésideration. Therefore, it is reasonable to select that H
from among a collection of alternative hypotheses for which the product
P(o|HNW)P(HNW), and hence the 1ikelihood ratio P(H|oNw), is maximal.

3 This is Bayes' Principle. It'can be considered as a generalization of

£

the well-known Maximum-Likelihood method of estimation of parameters

[4], {13]. 1In the latter, the event H 1is a set of values of the

Rl vl bl oL

parameters of a probability distribution; w= HYo, and o 1s the event

_ which consists of independent oBservations X]1,X2s+0+,X, oOf a random

, variable x. If it is assumed that DP(H) is independent of H, then
t the likelihood ratio is proportional to

25
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'g(clm-i--iﬁlyxila). | o ' (2.40)

where the right-hand side uses a suggestive if not quite exact notation. |

The iighf-hand gide is called the 1likelihood function. Bayes'(PrinCiple'l

appliéd to this special case is the Maximum-Likelihood method.

Notice that Bayes' Principle is a consequence of the symmetry in-
herent in thg definition of conditional probability (as exhibited in,'
eq. (2.36) and the tfiple intersection displayed in Figure 2.6),-and the
symmetrical interpretation of hypotheses and observations as events.
Thus .there is a certain degree of interchangeability offhypotheses and
observations., Hypotheses. which remain unchallenged by observations
assume, as experience accumulates, the role and properties of observa-

tions themselves, and observations (considered as events) can be con~

'verted to hypotheses in the right circumstances.

Tﬁis interchangeability, or substitutabllity,vplays an unﬁeralded
bur substantial role in the practical-anélysis of the reliability of
rapidly evolving complex systems, for .which only small sample observa-~
tions can ever be available. Modern commercial and military aircraft
provide an example. The relative.y small production.runs and the very
small number of aircraft of any oae type which reach high operating
times preclude the possibility of collecting extensive actuarial data
for the assessment 6f,hypothesea concerning reliability. This difficulty

" is mitigated to some extemt by making hypotheses (concerned, e.g., with

Hard Time maintenance ;ntervals) based upon prior experience with simi-
lar althcugh by no means identical equipment. In this way prior limited.

observatiocnal éxpegience is8 tranaformed into current working hypotheses

agaiust which}curreht obgervations, limited though they may be, are

tested. In turn, these observations form the foundation for, and in the
sense described above, are equivalent to, future hypotheses. Althqugh,
this application of Bayes' Principle is rarely made explicit and quan--
titative — one spesks instead of the need for "experienced" reliability

analysts — it nevertheless plays a major role in the practical analysis

~ of complex systems which evolve with time, have a relatively brief life,

and of which only a small numbér of veplices are. fabricated.
26
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i o N '3, TERMINOLOGY OF REL!ABILITY THEORY ;
é 3.1 The basic concept in reliability theory is that of the probability !
§ ’ _ g_f f,ailtsre._.o};,-( if one prefers a more sanguine outlook, the probability of

§ sﬁwim,"'ffequently called the reliability. For this application v’qe may

F » .

4 think of the set U as a universe of items or components £ whose

failure characteristics are of interest to us. The subsets of lgl which

constitute events consist of those. Eel which have failed prior toa . 1

given time. Thus, if t denotes time, then the collection Q2 of events

consists of the subsets

w(t) = {€elY: £ has failed prior to t} ;

(2.1)
Q r-_.{w(t)’:te R} .

Recall that R denotes the set of all real numbérs. It is evident that

o et B L Y R 1 it

tyj <ty implies w(t])Cw(t2) since each item which failed prior to 3

certainly failed prior to tp. This is illustrated in Figure 3.1, which
is the same as Figure 2.2 although it has a different interpretation. l
In this way the collection of events Q 1is parametrized by the real-

valued time variable.

ty <ty
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Associated with the universe U of items and the collection Q of

- events is a probability measure F which expresses the probability of

failure corresponding to events weQ (We may think of F(w(t)) as the
"area" occupied by the event w(t) if we interpret probabilities as
areas (e.g., in Figure 3.1) and recall that the total "area" of U

‘itself, considered as an event in @, must be equal to 1). With this |,

interpretation, F(w(t)) 1is the probability of failure prior to time ¢t;

- the probability of survival associated with the event w = w(t) 1is
\

R(w(t)) = 1 - Fo(e)) , _ (3.2)

80 g(w(t)) is the probability of survival until time t, also called
the relisbility. R(w(t)) can be interpreted as the "area" of. U - w(t).

If U consists of N items, if the number of items in w(t) is
N(t), and if the measure } is counting measure, then, since N(t) is

the number of items which failed prior to t,

Flu(t)) = N(Nt) : (3.3)

In order to transfer the above notions from the realm of sets to

-the realm of numbers, where the methods of calculus can be applied, we

use the indicator function defined by eq. (2;7) to obtain a failure
distribution function. Recall that

~ _ f1 if Eew(t)
Sue) B "0 if edule) . (3.4)

The function which assigns to each event w the number 1 1is.a random
variable. The cor:eapOn&ing‘distributlonffunction associated with the

failure probability measure F is, by eq. (2.12),

F(e) = fag f mdg E(u(t)) (3.5)
m(t) fﬁ .

Thus the failure distribuxgon F(t) ti mnrély the probability measure

~ . - .)

E considered as a function of the time parameter t.
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We can calculate the survival distribution R(t) in a similar way,

+but it is easier to use eq. (3.2) directly to obtain

i

R(t) = 1 - F(t) . | ©(3.6)

Notice that F really i1s a probability distribution in the sense speci-
fied by Eq. (2.13), but that R(t) has slightly different properties:

R(t) 1is non-increaéing; | (5.7.1)
R(t) = R(t+0) ; (3.7.2)
R(=») = 1 , R(+w) =0 ; (3.7.3)

each of these properties follows immediately from the dgfihing—relation

eq. (3.6). and the corresponding eq. (2.13). R(t) will be referred to
as a survival distribution even though it is not a distribution in the

technical sense.

The graph of the function t»R(t) 1is called a survival curve.
Figure 4.2 of Section 4 exhibits a typical survival curve for an aircraft

gas turbine engine.

In practice, measurements and observations are always discrete and
finite in number. This means that actual worldly knbwiedge of survival
and other probability distributions only supplies an appfoximatiqn
which (may be exact and) is a discrete distribution. On the other hand,
theory and philosophical beliefs about the nature of reality often suggest
that observations are discrete sets of values drawn from absolutely
continunus distributions or from combinations of absolutel§ continuous
.and discrete distributions; moreover, the techniques of mathematical .
-analyses are more highly developed for studying abéolutely continuous
distributions. Consequently, whenever it is possible to do so, it is
desirable to suppase that observations have been drawn from ideal and
ﬁypothetical absolutely continuous distributions. The density functions
corre5pondinq to these distributions play a central role in mbst develop-
ments of the subject. The absolutely continuous disﬁributionq which have
betn found to be most -useful in btac;iee and are most extensively studied
by theorists will be introduced in Section 4. '
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The generalized density function corresponding to the failure
distribution F(t) = Fg(t). (which may consist of both an absolutely
continuous part and a discrete part) is denoted p(t); that is

dF ! .
p(t) = 5 ; (3.8) 5
is the failure probability density. Equation (2.30) must be used to
express the generalized density function for the discrete part of F.
From Eq. (3.6) we see that the survival probability density is given by

%%= -0 (t) . (3.9)

Corresponding to survival and failure ﬂistributions are conditional

survival and conditional failure distributions. First consider the

conditionai probability of survival. According to eq. (2.35), the
conditional probability of the event wy given w; is

R(wyNuwy)

R(wpluwy) = ‘—ETGIy—— (3.10)

}  distributions parametrized by survival time we consider two times,
t; tz. Then the definition of w(t), eq. (3.1), implies w(ty) Cw(ty)

so the complementary events satisfy the reverse inclusion, i.e.,
U-w(ty) DU - w(t) .

The formula R(t) = 1 - F(t) implies that R(t) = R(U - w(t)). Introduce
wy = U - wy(t), wy = U - wy(t). Then wpCuwy: items in wz' have
survived at least until ty whereas items in wj have survived at least.
until t3 (cp. Figure 3.2). Now we can compute the conditional proba-
bility that an item will survive at least until t3 given that it has
survived until t;, where tj<tj. From eq. (3.10), this is
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wp = Y - elry)

w2 = U - w(ty)

w(t]_) C‘“’ (tz)

Figure 3.2. Conditional Probability of Survival
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R(ty|ty) (3.11)

We are to understand that t;, and hence the condition w(ty), is
held fixed and only ty wvaries (through values greater than tj). The
expression eq. (3.11) for the conditional probability amounts to the
same as the assumption that the universe of items has béen’re&ucéd from
U to w; (cp. Figure 3.2), and that the probabilities have been re-

normalized by division by R(wy) so that the total measure of wy 1s
adjusted to6 éequal- 1.

The conditional survival density is therefore obtained by differ-
entiating the numerator of eq. (3.11) at ty = t, which yields

| dr(t|ty) |
SRR X ¢
R e (3.12)
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The conditional probability of failure must be treated slightly

; differently sinca in order to fail during the interval (tl. ty), an item
5 must first have survived until t1. Therefore, the copnditional probabilid?

#
e

of failure prior to t2 given survival until t; .is - . ‘}

F(t2) - F(ty) F(r2) - F(t3l) *
Flealer) = —5— Fey) . Rep

(3.13)

“

the corresponding density at t3 = t; = t is usually called the hazard

rate (also often the failure rate) and is expressed by

TR IR T NI e g e 8 e e i e e

A e it s i B i

ele) » | (3.14)

By utilizing eq. (3.9) the hazard rate can be expressed in terms of the

survival distribution as

e B o sl 3K ol

n(e) = £« - L aogree)

(where log, denotes the natural logarithm function), and the survival

distribution is given in terms of the hazard rate by
t

]
L R(t) = exp (:[ n(x)dx) (3.16)

s e S ok s At s

(where éxp x = eX). Formulas (3.15) and (3.16) are valid for absolutely
continuous survival distributions. For discrete distributions eq. (3.15)
must be replaced by the corresponding finite-difference formulation.

el A e 2,

Suppose that an item consists of various parts, and survives only i

if 511 of its parts survive. If the survival cistribution of the item
is R(t) and that of the kM part is Rp(t), and if fallure of the

various parts is due to independent causes, then

- R(t) = JT Rg(t) (3.17)
- k

» é
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In .this case the hazard rate is : ' 1

ne) = - 5 (1°8e"Rk(t))

d
- ¥ i logeRi(t) ,

b that is

; n(e) = ? g (t) ‘ (3.18) q
where i
' ng(t) = '3’{'1°SeRk(t) (3.19)

3 1s the hazard rate of the kER  part. Thus, the hezard rate is additive i

for independent causes of failure. This result 1s valid for discrete as

ka3

‘ well as absolutely continuous survival distributions. This convenient i
{ property permits independent assessment of constituent hazard rates and
{ provides a simple method for combining them, by means of eqs. (3.18) and
(3.16), to recover R(t) itself.

s | i, A i

e I s

E‘ 3,2 If R is a survival distribution, then the area under the graph of -
t"_'R(t) is the mean lifetime of the items Ee U. In order to adapt our i
notatlon to items which begin life at t =0, let us suppose that R 1is
defined on [0, «) and that R(0) =1, tl;.j;:‘ tR(t) = 0. The area under the
graph is j(')“ R(t)dt. Integration by parts yields

, R(t)dt = tR(t) -fth
0 0v1 f
0 1 ;

- —fth -ft.dR . !

1 0

YT T T

i

e Ty
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since ti: tR(t) « ¢ by hypothesis and R varies from 1 to 0 as ¢t

varies from 0 to » . Now recall from eq, (2.9) that

1 .
fth -ftd5 =t , i
0 |

the mean value of the random variable t, thus the mean time before

tandie v i st

failure. Graphically this result amounts to nothing morc thaa evaluating
the area under the graph of t+~R(t) by integrating along the R-axis
as indicated in Figure 3.3.

1 y = R(t) o

dR

Wd ) .
t “~._______

s smrm e Atk

Figure 3.3. Calculation of Mean Time Before Failure
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4. USEFUL SURVIVAL DISTRIBUTIONS

The probability-of-survival distributions most commonly used in the
practical analysis of reliability data are also among those distributions

which have been most intensively studied by theoreticians. They are the

1) Exponential,

2) Normal (also called Gaussian),
and 3) Weibull

distributions. In addition, the

4) - Lognormgi
and 5) Gamma

distributions have played significant roles. We will define each of

these and derive the corresponding density and hazard functions. Since

.all of these distributions are absolutely continuous, the usual techniques

of the calculus can be employed.

1t will Be assumed hereafter that a survival distribution is defined
on some closed half-infinite interval, which will generally be

0itcwm,

4.1 Exponentlal, Suryival, Distribugton

’

For this distribution the prob&billty of survival to time t is
R(t) = exp(-1t), \~0, t20 . (4.1)

Observe that éiﬂ R(t) = R(~) = 0 tmplies \~0. Figure 4.1.1 1llus-
trates the graph of a tvpical exponential distribution,

The exponential survival densfiy corresponding to eq. (4.1) is

}

o(t) = - f‘i{‘ = \oxp (=At) . ~- (4.2)
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Rit) = oxp(-zti
R(v)

ASlopOlt_/
t=0 is
A =  Fig. 4.1.1

p(t) = X expl-At)
A

“plt)

> Fig. 4.1.2

? o nlt) = A

ntt)

» Fig. 4.1.3

Figure 4.1. Exponential Survival l)iqtr:lbution Density,
and Hazard Rate '
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and the hazard rate is

Mo

d LOgeF(t)
n(t) = - —gc = A3

TPy

cp Figures 4.1.2 and 4.1.3.

R el

Figure 4.2 displays survival data for the J65-W-3 jet engine. Semi-

logarithmic graph paper is used so that thz granh of an exponential
distribution appears as a straight line. In this example the data points

LR

lie close to the line shown: the underlying distribution can be accurately
approximated by an exponential. Were the exponential of the form eq.
(4.1), then we would find R(0) = 1, but, the data indicates that at

it ke Sk i UL S i

@ F

SLa

t = 0 ({that is, upon initial operation) approximately 6% of the items
were found to be in a friled condition. The variety of potential mean-

ings and definitions of the term "failed condition” have been explered

. L d .
at length earlier in this volume. Regardless of the precise meaning

attributed to the term, the phenomenon can be intevpreted as reflecting

T W T S T RSy

manufacturiﬁg defects which have escaped test procedures as well as

failures induced by pre-operational tests or aspects of the production

it g e L el 2 e s B e hamiiail

process itself which are not detectable (or at least not detected) until
= 0. This phenomenon is accommodated

o o

initial operation is attempted at ¢t
in the mathematical formalism by the simple expedient of replacing the

t + tg, vhere tg can be thought of as correspond-

. This problem

i’ B

time variable t by
ing to the duration of pre-operational exposure of the item.
is not éonfined to exponentially failing items; iL is found for all types
renormalization of

e A iy 21 o e

of distributions. The solution is always the same:
the zero time by replacement of t by t + tp for an appropriate
positive tg. Thus the renormalization exponenfial distribution (also

il

i

called "shifted exponential distribution) is

UEIC NP OR B

R(t) = exp(~A (t+tg)) ©(4.4) :
; with ¢orresponding density i
Y © p(t) =rexp(-A (t+tg)) |  (4.5) 4
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SOURCE: United States Air Force, Procedures for Determining : o
Aircraft Engine (Propulsion Unit) Failure Rates, Actuarial Engine

80 120 160 200 240 280
Age (in flying hours)

Life, and Farscasting Monthly Engine Changes by the Actuarial
Merhod, Technical Order, TO 00.25-128, October 20, 1959,

Flgure 4.2.

Typical Exponential Survival Distribution:

J65-W-3 Jet Englme (noml-lugpri;hmlc'grnph A f

paper)
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and hazard rate

n(e) = A . B ' o (4.6)

.

Note the important fact that the hazard rate is independent of to.

The exponential distribution plays a special role in the theory of
reliability for two quite different reasons. The first is a practicél

~one: it has been found that an exponential distribution characterizes

the life history of a variety of equipment types, generally including
electronic devices and complex equipment. The second reason is a
theoretical one, and in some respects it is the more basic. Because it
has a constant hazard rate, the exponential distribution separates the
survival distributions which have an increasing hazard rate from those
which have a decreasing hazard rate, and it therefore alsc separates two

completely different types of maintenance policies.

It is clear that if an item has a non-increasing hazard rate, then
there is no advantége gained in replacing that item by a new one at any
time prior to its failure. Indeed, if the hazard rate is étrictly
decreasing with time, then replacement substitutes an item with a greater
ptobability of failure for the one alreadv in operation. If; however,
the hazard rate is strictly increasing, then replacement of the item by
a new one will increase the probabilitv of survival. 1In this case the
main issue is the cost of replacement maintenance, and a principal

mathematical problem is to determine replacement intervals which are

“optimal with respect to some mix of acceptable failure rate and mainte-

nance cost., The exponential distribution separates these fundamentally
different classes of survival distributions and @aintenance policies.
This ig specially fortunate because the exponential distribution has
particularly simple mathematical properties which often make 1tApossiblev
to carry out technical analvses in complete and rigorous detail, thereb&
obtaining lowver or upper bounds for the properties of géneral non--
decreasing or non=increasing survival distributions., This is one main

reason why a large portion of the reliability theory literatdre is de-~

voted to the study of svstems whose constituents have exponential distri- -

but Lons. , 39 4
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E : o The above’ remarks c;an'be made ﬁlot’fé precise. Let R(t) be a survival
i ) v."d:gsttibutiph with corresponding hazard rate n(t) ," and' su'ppoée that n
] ig_either non-increasing or non-decreasing for 0 = t = T. . Then ,
3 ' ' ¥
n(e) S (@)  or | Y ‘;
| o A 2 | - (4.8) !
3 . \ . SN ) ' e .. : . . . %
g ' according as n 1is non-increasing or non-decreasing, respectively.
: Hence f
o d log R(t) < o g
: o - ac = n(t) > n(0) o (4.9) '
implies’
: ' . 2 e | : ‘
: loggR(t) f - n(0Ydt = - n(0)t - (4.10) 3
FL‘ | 0 \ . ‘ - | . ;
i- for t < T, where the upper (respectively, lower) inequality corresponds X
to-a non-incredsing (respeetively, non-decreasing) hazard rate. Since ' i
3 : o ‘ : )
3 exponentiavion preserves the direction of an inequality, we find |
R(t) Z exp (- n(O)t) , OS¢t ST, 1 (4.11) 1
if the hazard rate n(t) corresponding to R(t) is non-iﬁéreaslng for ﬁ‘
02t =T, and e : A ' ; ’
R(t) Sexp (- n(®t) , 02¢=T | UISE R P
. | |
if n(t), is non~decreasing.on 05t ST, as claimed.
That an easily analyzed gurvival distribution separates the two \}
classes 1is an important and useful fact. But there is an unexpected i
bonus: the single narameter A = n(0), which specifies the exponential i y
distribution, is equal to '%%(O) /R(0) (even in the time renoxmalized '

form R(t) = exp (- A(t+tp)), ana consequently it can be estimated fron
ddtg coIle‘cted'dﬁﬂng ‘the 'éarly 1ife historyof the item.  Therefore, if
‘there are rYedsons to believé ‘that - r(t)" fs either non-increasing or

byt . ‘ D . y
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. fector A these functions ‘and an application are illustrated in
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non-decreasing, then R(t) can be bounded by an exponential distributioq

whose parameter (= hazard rate) can be realistically estimated.

L2 mmmmm&

This distribution is alse¢ frequcntly encountered in applications.
If the mean of the normal distribution is poaitive and 1a;se'in comparison
with the standard deviation, then truncation by restricting its domain to
the aet of non—negative t will not result in practical difficulties..
Otherwilsge, the truncated distribution must be normalized to ensure that
R(0) = 1. To do this, define

1 r 1 g-—t")2 '
A= f .exp(- 2(, =) fe (4.13)
- A I I A - |

“Then the trunceted notmal survival digtribution\is

\

§

| R(t) =—~;,-— f exp (-%—(9—;5—) )du, €20 (4.14)
[ . 0 \I :

* * are, respectively, the mean and standard devlﬂtion

where .t and o

of the untruncated- normal. distribution. The associated truncated normal

survival densgity function 1s
dR 1 1{t-t*
A v ("z‘(';;r“) ) : (619
and the truncated normal hazaed rate is

(-3f=2)) S
PN 2\ - | |

f exp (- _]._(____u—t ) )du‘ (
e NG

Notice that the hazard rate is independent of the truncation normalization

Figures 4, 3 and 4.4,
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SOURCE: United States Air Force, Procedures for Determining Aircraft Engine
{Propulsion Unit) Failure Rates, Actuarial Engine Life, and Forecasting Monthly
Engine Changes by the Actuarial Method, Technical Order, TO 00-25-128, October

20, 1959.

NOTE: i and G are maximum likelihood estimates of u and 0. The Appendix describes
the techniques used to obtain them. Using these estimates, a chi-square goodness-of-fit
test was performed. The hypothesis of normality could not be rejected at the 20-percent
significance level. Results giffering from these by less than 1 percent were given in a
curve fitted by the rules of E. B. Ferrell, "‘Plotting Experimental Data on Norma! or
Log-Normal Probability Paper,” Industrial Quality Control, Vol. 15, 1958, pp. 12-15.

Figure 4.4. Truncated Normal Survival Distribution: J57-F-59
and J57-P59 Jet Engines (Normal probability graph.

paper)
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The WEibull distribution was introduced in 1951 by the Swedish
statistician Waloddi Weibull in order to describe the tensi¥e strength

of steel [14]. " It has since been applied to a variety of reliability
problems. The Weibull survival distribution is defined on 0 £t <ow
and assumes the form .

oo bl A R

'R(t)g= exp (-At8) , A>0 , s8>0 . (4.17)
_The éorreéponding Weibull survival density function is i
| p(g) - - %% = xst5lexp (- At8) _ | (4.18) f
and the Weibull h;zard rate takes the form é

n(t) = asts-1 | , (4.19)

Observe that if s = 1, then the Weibull distribution reduces to the

expdnential distribution with parameter . The3hazu:d rate 1is increas-

PRSI AL

ing if s > 1 and decreasing if 0 < s < 1. One can think of the

ol

3

Weibull hazard function as the best po&er—function approximation to an

arbitrary ..ontinuous hazard rate in a neighborhood of t =.0,

Gia5s of th ‘eibull distribution, density, and hazard rate and an
applli: ~tfon appear in Figures 4.5 and 4.6,
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"Fig. 4.5.1

Fig. 4.5.2

Fig. 4.5.3

CFlgure 4.5. Welbudl Survival Distribugion, Densfpy, and Hazard Rate
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4.4 Losnermal Survivak Diskribution

The'logﬁormal saurvival distribution appears to be finding increasing
favor as-a candidate for the description of survival data. It has been
applied to the description of crack growth as a function of time in.

primary aircraft structures [3] and to jet engine compressor bleed control
data (cp. Figure 4.8). [

The lognormal survival distribution is

Rty = L fomy [ 1 (208 7 To8T 2)9_\1 . (4.20)
avam J P 2 o u

where .0 < t, Ioget is the mean of loget, and ¢ 1is the standard
deviation. The corresponding lognormal survival density is

e L, o (- L2050 TORE 2 @
p(t -l exp (- 5 5 s (4.21)
and the lognormal hazard rate is ‘ _ e
1 Tog t \2V ‘
1 [ loset - oget) ) X
XP\ T 2 o
n(t) = - = : (4.22
tf:xp(_l_(logeu—l'oget )2)93 § )
. 2 c u
. t
;
Graphs of these functions are displayed in Figure 4.7 o@" .8
exhibits an application to observations. Notice thaf rate
(Figure 4.7.4) increases at first, attains a maximum & g\dehteaaes
. i |
While this behavior is not often observed, thi® eyanple

thereafter.
illustrated in Figure 4.8 suggests that the lognormal distributiou may

be appropriate for some special types of aviation failure‘phenomeni.'
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Figure 4.8.

Lognormal Survival Distribution:
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C 4.5 .Gamma Survival Distribution
This distribution generalizes both the lognormal and the exponential

\

distributions. The gamma survival distribution is (

R(t) = r'(s)f u® Ly ,~'a >0 , A>0 (4.23)

where t > 0 and

r(s) = f e-uys=Lgy | | (4. 24)
0

?
E
3
L.
b
3
|
N
:
]
.
%

is Euler's gamma function. If s = 1, then the gamma distribution
reduces to the exponential distribution R(t) = exp (- At).

TR e we

Ll

If s = %, then the substitution of variables

] 1 2 . |
'l 1 ogev - U !
: u = -2-(——-0——) (4.25) |

D ot 4 ks b

PR RN v

transforms the gamma distribution Eq. (4.23) into a lognormal distribution

1
|
: relative to a pseudo time variable t = ettOV2t | he gamma survival \ ;

] density is ' - é
; ' 2881 : \ E
p(t) = T(s) oxp (= 2t)., (4.26) ]

and the gamma hazard rate is given by

s, s-1

Rl L R R M L oS e

n(e) = AE_exp (- At) (4.27)
‘/P -u s-1
u
At
Their graphs and an application are displayed in Figures 4.9 and 4.10. \ é
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Fig. 4.9.1
)\sts-l ,
s<1 p(t) = BUON exp (- \t)
!
A
olt)
; . Fig. 4.9.2
s-1
ne) = At _ exp (- At)
-u s“l du
At
[ ~>  Fig. 4.9.3
Y‘v t v ’
4
E, Figure 4.9. Gamma Survival DistriLuticn, Density, and Hazard Rate
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5. SIMPLE AND COMPLEX SYSTEMS

2&1‘ The.statistical study.of:reliability'haé its origin in deqbgréphy,-
and its terminology fefiecés thié.history.‘ The survival disﬁ?ibutibh,_
which speéifies the probabilityfthat an individual beldnging 66 5 hbmo-
genegus,popqlation will survive until time t , yieldu a hazard function

*which, as time increases from birth until de&th; initially decreases

from large values during an interval of infant mortality, remains rel-

"~ atively cqnstaﬁt for some time, and then, as the wear-out interval of

old age is attained, once again ;ucreéges. Thus the graph of the hazard
function is a shallow U-shaped curve, frequently called the "bathtub
curve" in reliability literature; cp. Figure 5.1.

P

1\

y =7t

Fig\‘e 5.1. "Bathtub" Hazard Furction

The'.reader will have noticed that none of the standard reliability
. distributions described in Section 4 gives rise to a hazard function

whose graph is U-shaped. For instance, the Weibull distribution cor~-,

responds to a haia:d function of the form (cp. eq (h.i9)).
.81 : .

.
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which increases with increasing time if s.> 1, is constant 1f s =1,
and decreases with increasing time if s < 1. The hazard function for

the logneral survival dieribution increases to a maximum and then

' decreases as time increases. Such functions can be used to describe

i
the infant mortality regime of a hazard function, or the wear-out regimeJ
but not both. This remark nas an important consequence: if an item !
displays infant mortality charsctetistics, that is, if n(t) is a de-
creasing function for small positive t, then n(t) can only be repre-
sented by one of the standard distributions (such as those described in
Section 4) for epochs much ‘earlier than typical wear—out epochs, since '
the infant mortality data is necessarily acquired first. There can be

no solely mathematical method for gaining information about wear-out

characteristics from data which includes infant mortalities.

The reason for this state of affairs is plain in human mortality
characteristics. Although the statistical propertizs of infant mortality
and wear-out at old age are separately highly regulsr and susceptible to
statistical analysis, their causes and corresponding hazard'functions
are very different. There 1% no reason to believe that any one math-
emsticslly simple statistical distribution can be related to the under-
lying physical phenomena which correspond to both extremes. It thus
becomes necessary to think of»the(U—shaped hazard function as the sum

of (at least) two independent functions,

4 O =g . (5.2)

where no(t) describes the hazard due to infant mortality and n (t)
describes that due to wear. One could argue for includin/y a third
hazard function to deéscribe hazard at intermediate ages, as is:done

in demographic analysis, but this will not be necessary for our present
purpose. o ‘

With n decomposed as in eq (5.2) aboye, and supposing that“both
infant mortality and wear-out are present for the items under consider-
ation, we may think of ng & a decreasing function which tends to a

limit k., 0 < ko = 1{m no(t). It is clear that without further
t-po0 :
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L. detailed information about the (physical) characteristics of the item
% under consideration, analys;s'of eafly;ﬁailure data cannot lead to any
conclusions about wear-out. if infant mortality persists for a significant
period.bf time. . '

Reliability theoreticians are consequently constrained to Béudy

% specific systems for which it is possible, on physical or other grounds,
E to determine o and n_  independently, or to study systems for which’

F eithér infant mortality or wear-cut (or both) are negligible.. They are
E

F

!

faced with an additional difficulty. Complex systems whose conatituents
follow various distinct survival distributions, or the same distribution
with a variety of parameter values, are not amenable to rigorous analysis.

S e AT P

For these'rgasons‘the bulk of the theoretical literature concerned with
reliability is devoted to simple (one-celled) items for which the hazard
function is assumed 2ither non-decreasing (wear-out) or nonfincreasing
(infant mortality)--the constant'hazafd function, correspond;pg to the
exponential survival distribution, is a special case of botp-%and to
configurgtioné of 1denticai or closely'related simple 1teﬁs wﬁich boésess

Al e ot i

T DR, L TN I 7 T T T e

special symmetries, e.g., series- or parallel-connected simplé items.

e e e

With these constraints it may be possible to devive optimal maintenance
policles if the family of policies considered is sufficiently structured.

ra r Y

Perhaps the most popular structural policy constraint is maintenance

T T SR T

T,

periodicity.

c X,

. \ - . N
Many simple items exhibit wear. If replicas of ship an item are
i expected to be in service at a future date significantly greater than
! the lifetime of an individual item and if single items are producable

at low cost and in great number, then age exploratiorn, or life testing,
will establish the hazard function from observations and thereby iden-
tify it as a standard hazard function, amenable to theoretical study, 1f

it haprens to be one. If an analytical expression is not known, an

approxiﬁation can be obtainel (e.g., fbllawing the presoription given 1

10 191, ot nhpeticéi'ﬁefhods*éan be useG to :arty out the computations ;
" called for by theorctical analyses. ‘Ta this sase there 1% no problem : ' i

TN

e e o | L e i e i
o

in principle in applying standerd methods of reliability theory.
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'I{,_hbdever. the expected operatidnal lifétime prior-tofobaoleocence
 of the type of item is comparable with the dxpected lifetime of an indi-

vidual 'item of that type, then, unless accelerated testing is possible,
there will be no time for age exploration; wear characteristics must be

derived fram some more basic, usually physical,.argument; or;hyPOtnesized

based on related prior experience, or analyses founded on explicit knowl-
edge of the hazardffunctionvmust be forgoneL‘

5! . » L¢v7 show that there are :important categories of items for.
which (. 2 survival distribution is a standard distribution, and the.pa-
raw. ter values can be estimated from actuarial anclysis.. An extensive
analysis of survival distributions was reported oy D. J. Davis [1].
Among his findings were that the exponential survival distribution was
characteristic of such devices as '

¢ commercial aircrafc radio tubes,

e " Linotype machines ’
° automated mechanical calculating machines
e ball bearings ' '

All butﬂthe last are now obsolete. It has since been reported that most

.¢lectronic systems and most 'complicated' syatems also fall into this

category. Alrcraft engines, however, usually exhibit‘some degree of
wear-out, i.e., their hazard function ultimately increases with time.
(cp. Figures 4.4, 4. 6, and 4 10, but also Figure 4.2).

Typical studies of prevenrive maintenance policies for simple sys-

Vtems asgume ‘that the actual state of the item ‘'is known at all times

prior. to. failure, including the associated survival dietribution. The
time of failure of the item is the only unknown. Moreov . typicaf
maintenance actioms are restricted to replacement of a given item by

an identical Zero- timed item, thus renewing the system of which the 7
item is a conatituent._ Generally, the problem treated is determination
of the time of replacement (renewal) to minimize cost or meet a numer-
ically expressed safety requirement, or to introduce redundancy (i.e.,
create a aymmetrically interconnected collection of replica; of the
simple item to form a simple system) in order to reduce the failure“

rate. .
' 56
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jﬁz, When the items which conetitUte a system are essentially identigal
and are interconnected in a symmetrical way (e,g., series~-or parallel—
interconnection) and when the survival distribution corregponding to - ',
each individual item is known, then it may be possible .to perform a.
complete mathematical analysis of the reliability of the system. Sys- .
tems for which one or more of these assumptions are invalid can be called
complex systems. This definition differs im an inessential,way from that
given in Chapter 4, Section 2, " The combined vehicle- and earth-based -
control eystems for the Aoollotand Viking projects are examples of one=.
time'COmplex systems for which neither complete age explorxatiru nor,,
accelerated testing to determine survival characteristics was -possible.

This deficiency was compensated, to some extent, by the extensive use
of redundancy. Nevertheless, it is clear that a complete mathematical

reliability analysis for such a system is out of the question.

Commercial and military aircraft are examples of complex syst-ems
about which much nore can be learned\through testing, age exploration,
and experience because there are, relatively, 2o many more of them and,
ultimately, they are in operation for a long period of time. But for
them also a complete mathematical ‘analysis is out of the question be~
cause of the large number of diverse items, each with its own survival
characteristics, and the complex and irregular interconnections and
multiple uses and paths which have been designed into modern aircraft,
or are unintentional consequences of the design. bbreover, aircraft
are modified as tine passes to incorporate new developments in assembly
and subsystem design, and maintenance activities quickly ensure that
the ages of various subsystems, both majqx and minor, bear little rela~

tionship to the nameplate age of the airframe.

Just as the (classical) properties of a gas cannot, in practice, be

derived from knowledge of Newton's equations although the larter suffice

n_principle for the task, 5o too the survival characteristics of a
complex system could not be obtained in practice even if complete knowl-

edge of the survival tharacteristics of its constituent partc as well as
the details of their interconnection were available. An alternative
method is needed, 'legs sensitive to thql'microecopicﬂ structore of the
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compleéx system nnd thetefore necessarily of 1nsu£ficient power ito’ treat.
all conceivable quéations, but powerful enough neverthalcns ‘to.guide :. -
the formblation of mainteénance policy To continue this similts, ‘the :-
relationship of -a method for analysis of complex systeuu to ‘the t*adi—
tional method for analysis of simple systems can be likened to the 4
relationship between statistical mechanics and newconian mechanicl. o
detatled knowledgé about individual items and their interconnection -
will, 4n general, not play an explicit role, but the method’will pro-
vide the decisive information vi’ h is.used to formulate answers to the

basic maintenance policy questious.

The Reliabilify-Centered Maintenance Program [6] described in this

volume s a general method of designing maintenamce policies for complex

systems which requires very little explicit "microscopic' knowledge of
sutvival distributions and interconnections for the tens of thousands
of constituents of a commercial aircraft. The next Section 1s.devéted
to a mathematical description of the structure of this Program.
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8. RELIABILITY-CENTERED MAINTENANCE

6.1 The principal goal of a maintenance system is to ensure the highest
practical standard of operating performance of the equipment being main-
tained. Criteria of operating cerformance are, however, quite varied
depending simultaneously upon the cost of maintenance and the consequences
of failure. For circumstances where the consequences of failure are
relatively ‘minor it will generally be sufficient to focus on the relia—
bility of the constituent items of. the system, and to learn from
experience as well as from testing whether component redesign is necessary
and which maintenance policies are cost-effective. As such information *
accumulates, .naintenance policies end system design evolve together to -

1mprove'operating reliability.

~ Those systems for which the consequences of failure are serious,
such as commercial aircraft, nuclear reactors, and military missile
systems, must be considered from a different point of view. In each qf
these instances, the consequences of certain failures are unacceptable.
Criticel failures in the sense of Chapter 3.2 belong to this category,
It will be convenient to refer to any unacceptable failure as a critical

failure. The criteria of unacceptability may be quite complicated in any
specific instance, althcugh certain types of failure will normally be
clearly unacceptable. ﬁor example, a failure in a military missile which
destroyed its ability to complete it mission would be unacceptabie, as
would a faiiure of a nuclear power reactor situated in a densely populated

region which could lead to an explosion.

_In situations such as these there is the temptation to avoid failure
"at all costs," but, since there are always practi.a1 limiteéions to the
resources which can be brought to bear on any single problem, and also
because in certain complicated circumstances it is not possible to obtain
all of the potentially valuable information which would in principle be

necessary to avoid failure, the atiempt to aveid cric1c31 fai1ures must
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inherently be a compromise between the imputed cost of the failure and
the cost of procedures that would decrease the probability of failure.

WLt TR TRV eI g

For complex systems such as commercial aircraft. it would be pro-

; hibitively costly to devote serious and scheduled maintenaace to each of
its tens of thousands of parts. But of greater 1mportanue i® the obser-
vation chat intensive scheduled maintenance (be it "Hard time" or "On h
Condition°" cp. Chapter 5), regardless of cost, will not necessarily
reduce the probability of critical failures. This suggests that the

S

e T TR TR TRT AL N T S
4

constituent items of a system should be analyzed with regard to the

A

cbnéegggnces of their failure rather than merely with regard to their

(FW-RERRE P

reliébi;iry. If the consequences of failure are acteptable, then, in

the absence of some other reason unrelated to criticality of feilure,

Lo

-

the maintenance policy designer need not and should not devote resources

FER YT T T AT, e

to scheduled maintenance of the item. The recognition of the importance

s

1 ’/ of the functional role and consequences of failure of an item are basic

I T
-
»

principles of the Reliability-Centered Maintenance Program; cp. the
extensive discussion in Chapter 3. TIts main practical consequenue in the
case of commercial aircraft is that, of the tens of thnuaands of 1tems

which are part of an aircraft, only several hundred particlpate in

PRI TRIOIEE APIC N NP E e

“ervitical fallures and therefore the latter are thu only candidntes Fnr

o

suheduled maintenance pro;edures.

It may turn out that an item participatés In ceritical Tailures but

i B s Lomilad® Lo

cannot benefit from scheduled maintenance. There may not be any way to

detect reduced resistance to failure. -One resolution of this dllcmma la

it

to redesign the item to avoid participation In ¢ tluaﬂ‘lailuroa or 8o
that reduced resistance to failure can be detect.™ by scheduled malutcnanco
uperatlons. The latter solution is an Instance of another lmporgnnt

ptlnuiplo of the Rellabilitv-Centered Maintenance Programr items which

e Sl e i - s 28

: pnrtlcipat, in critlcal fallures should be replaced by ftoms which con-

vert critical failures to non-critical fallures or to a mode of reduced

resistance to rallure whiuh can be detected by scheduled mulnrbnnncu_ B

operatlens . One Lonsrquengo of th}s policy Is that it may Tead tu an

Licrease in the number of alluroq or cqulpmunt rupla;umontx. thoreh\

inureaulng maLntenaneL cnata, but, bv r;du;lqh the prohahllitv ol crttlc\l ‘ i

.
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failures, it also reduces the total system operating coaté%fwhich include
the imputed large costs of critical failurap.. Thus, application of the
Reliability-Centered Maintenance Program simultaneously

e Reduces the brobability of cfitical'failure;

e Reduces maintenance costs by reducing the number of items
considered for scheduled maintenance;

e Increases maintenance costs by replacement of items whoee
reduced resistance to failure is unobservable by items whose
reduced resistance 1s detectable by scheduled maintenance, or

whose failure is non-critical.

The remainder of this Section provides a mathematical formulation
of the prece&ing ideas. There are three main mathemaéical aspects. The
first corresponds to the Qgrtition'of the system into sets of items that:
are functionally related vy means of the consequences. of the}r failure
(cp. Chapter 7). The second is the formal expression of the costs of

maintenance and consequences of failure in common terms of diract and
This maintenance/failure cost function is really the main

imputed costs.
objecﬁ of study. The principal purpose of the maintenance policy

designer is to minimize the maintenance/failure cost function. The third

mathematical aspeét models the iterative procedure used in the Reliabilicy-

Centered Maintenance Program to minimize the total cost function. The
Decision Diagram approach of'Chapter 6 -1is the main component of this part

of the Program,

6.2 Every complex system is composed of many individual parts or items.
These constituents are not necessarily in one-to-one correspcndence with
functions performed by the system. Most physically distinct parts per-
form no function at all in isolation; some may be cannily designed to
participate in the performance cf several distinct functions (as an ajir-
linef seat cushion 1s also a {lotation device). Thus it is impossible

to identify parts with functions or roles, and it may not even be possible

to obtain complete agreement ubon what constitutes the set of elementary,
or irreducible, items of a complex system. , We will assume that some
choice ha§ been made. The volume titled Reliability-Centered Mainte-
nance [7] provides a detailed description of one procedure that cah be
| followed to make this selection for commercial aircraft.
61
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. Let § denote the set of items of some complex system and let s
denote™ typical item belonging to S. Items of a given type may occur
more thanwnce in the system; each occurrence is represented by a distinct
element of §. We may think of the items which constitute the system as |
represented by points, and of § as the set of those points; this !
interpretation is used in Figure 6.1 i j

PV ST DR

~

Figure 6.1. Set of Items of a Complex System

PR NER T

To each 8 € § there‘corresponds an associated survival distribution ' :
t » Rg(t), where we suppose that some satisfactory definition of failure
for = has been selected. The reader should recall the extensive dis-
cussion of this difficult problem in Chapter 3. With an appropriate
definition of failure for the system § itself, let Rg(t) denote the i
survival distribution for s. If Rﬁ(t) could be readzly expressed in
terms of the Rs(t), 8 ¢ S, then the problem of maintenance policy design-

St L i B

would be reduced to the establishment of a maintenance procedure for each
8 € § which ensures that Rﬁ(t) > k (where k 1is a given minimal
acceptabie gystem reliability) and, subject to that constraint, costs

e Areaimmir

least to implement. 1In other words, programs developed using the tech- ! }
niques of reliability—cehtered maintenance tend towards minimizing all

costs that are a function of scheduled maintenance.

§
{
! )

- 62
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But Rﬁ(t): cannot be explicitly eibteesed in terms of the Ry (t)
for complex systems consisting of numerous parts. The set {Rs(c) :sc.g}
.of survival distributions does not contain all the information necessary
for the analytical solution of the problem because the components s of
thé system are in general interconnected and, therefore, at least some
of the survival distributions Rg(t) are not independent. Suppose, for
the moment, that the probability of survival of each se€ S were
independent of the probability of survival of the remaining items. Then

R§(t) - sg§ R (t) , | (6.1)

and this relationship would enable one direétly to réduce all questions
about system survival to questions about the survival characteristics of
the elementary items, ignoring their interconnection. Since the Rs(t)
ére, in general, dependent, we have the choice of studying the inter-
connection of the items or avoiding consideration of elementary items
altogether. The first alternative is typical of the standard methods
reported in the literature., The second alternative has received much

less attentiou (a cecent na’ysis which adopts this viewpoint is reported

in [10] lus at the undation of the Reliability-Centered Mainte-
: *, nancej»pl oa ' ) )

We need some terminology. If 8§ 1is any set, thgn a partition of

§ is a collection of subsets A such that

L = § o
AK‘JA s _7 (6.2.1)

-

and, 1f X eA, A' €A, then
X #A' implies AN A' =9 ; (6.2.2)

eq. (6.2.1) asserts that the subsets A exhaust’ §; and eq. (6.2.2)
states that no two of the subsets overlap. This s‘ituation is represented
in Figure 6.2. A partition M of § is said to be a refinement of

_ the particion A if each ue€ M 1is contained in some Xe€A. Thué, the
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; _ refinement M further partitions the subsets A. A refinement of the
‘ ’ “ partition. A exhibited in Figure 6.2 is designated by the dotted lines
in Figure 6.3. ‘
fE § A= {N} 3
b
fL
|
% E
: 4
i
1
!
@
- 1
3 ' i
i
. :
h ‘ i
: i
! i
: - AcA
- !
1
4
i
: Figure 6.3. Refinement M of Partition ;
3 . . [ . g
The collection of subsets of the form {s‘ y where s runs through all - | i
the elements of §, is the finest partition of all; it is a refinement of :
every partition of §. ‘
64 ' ;
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. Now suppose ‘hat B is the‘set of elemmntamy;jtems of a° comp]erftjﬁ'il
system and that A 15 a gartition of S. Just as zha: ausvivai distrxbution :

RN

Rg(t) ds a:ﬂOCiat ad - vtLh the sy tom itaelf, sn too ‘¢an”a’ su:vivaf”' “|,4L 

o

-distripu;l n Px(t“ be.’ asqocisted wi,n each set A ° belonging to’ the
_éértitian. ~Each A is a collectiou of items, hut &A\C) will nor: in
\genetal be : ikhte oroduct of’ ‘the' survaal distribntlons of the covstituent'

itéma s8€ A because of thgir lntcrconnections. Nevertheless thcre may ’

ba’ some partitions ! for wbiuk the ARuryival’ distributions aesume a

,;particularly conv¢nieﬂf ana;vtical form or, even if they cznnot be }fn o

A LI

explib%t;v identified have particularly conven#ent prnnertiea.

i

One purpobe cf the decompouipion‘and“partigion.procedqxeS'discﬁésééi{

‘in Chapters 2 and 7 is to define a convenient partition of the set of

parts of an airliner. 'The.methodféescribéd#ia”appl;;ébla. in princ;pie;‘zf

to any complex system. Yarious pdzte are amalgamated by-their.intefﬁ'

‘counvct.ions and'functionai interdependence into components, subassemblies,

assemblies, and subsysteﬁs. Each of these 1is a ratural candidate for an
element in a partition of 8. If, for example,'a,paffitibn . contéiné

some subsystem X, then the subassembllies which conatitute X, together

- with the other elements of A, define a refineﬁent of A.

Let us suppose that A 1is a partition of § such.that'ﬁhe survi?al'
functions R, (t) and A'(t)‘ of any pair of distinct elemente 1\ # A,

A, Ae€p, are independent. Then

R (®) = A Race) | o (6.3)

¢

A partition enjoying this property always exists, because the coarsest

pangirion, which consists of the single set '§' itself, has this property.

In principle, wmost is known about the survival characteristics of the-
elementary parts from which § 1s ultimately'cbnstrqcted,_and progres=
sively less is known about increasingly complex kmalgamations of the
elementary parts. Therefore we seek that compromise pastition whdse_:'“
constituent subsets are as simple as possible,’i e., 28, cloge to the
‘elementary parts as possible, while still tetaining ‘the proper;v that

the survival distributions of the elementa nf’ the parrition are 1ndepéhdent,"
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3 -390, that* eu. (6 3) rbmains valid.a ‘That {is, . among al] partitions of - §

éi for'which eq. (6.3). hclds we seek a. paw*ition such that if - M ds any
3 | X ,refinement of 4, then eq (6 3) does act hold foY DTx.,A,partition A
! i which bes this: property w111 be said to be maximally independent. It is

clear that maximally lndependent partitions exist but are not necessariiy‘

{udlque, that is, there may Pe mor= than one way to select a maximally
independent partitlon., C . S !

. i

.- ~ g R N B s =
e e s R

e AT R i e e o 5 A e LT AR o G it

1t is ir.ultively clear that a complex system _uach as an airliﬁer o |

can be partitloned iﬂto indepeadent (or &t least very nearly independent) -

subsysrems .according to this presctintion._ For instance, apart fr&n a

* common interdependence on the power~plant as'an energy source, the sub-

ST P o)
PR SR e L ik

Beoy

. system consisting of the collection ¢f passenger reading lighté is

4

TR

"indepcndent of the cabin pressurization subsystem, the landing gear

assembly is independent of the flight control surfaces subsystem, and so
forth. ‘ ‘

o Hereafter we will cssume tha: some maximally independent partition -

A has been selected. Thé next task is to associate a- cost function with
this partition.

6.3 Let Cy(t) denote the sum of the expected cost of maintenance and
imputed cost of failure of the- partition element A c A as a function of -
time t. C)(t) includes the cost of Hard Time replacements, of On
Condition inspections and replacements, of warehousing and distribution
of replacement items, and all other.coste attripdtable to the maintenance o ?
function. It also includes the imputed~cosf of failure of A. For some
partition elements the co<t of failure 1s negligibly greater than the
cost of renewal of A. For instance, failure of the in-flight motiom
picture~syscem, a fairly frequent occurrengce on some.airlinee, ig at
worst an irrvitation which may influence passenger preference in a minot’

way and thereby affect future passenger load factors to some slight degree. .

Failure of other, safety-related, partition elements can entail-coscs-
far greater than the cost of 'enewal of A. If failure aborts the bission
. or, in the .rase of airliners, causes loss of life and/or loss of the entire

- -gystem, then the 1mputed costs of the fu lure constitute the principal
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driv14g ‘force beuihﬁ the desizn of thﬁ‘mtihtenanca poli&y, 6ty
inciudes such cqets. - = :

Certain costq are not 1nc1uded,1n Ai(é) “in uhat fo]lows, although
they m? ght find their placa in a moﬁe comprehensive t*ea&ment of our ‘

' subteﬂt. in tha caos of commercial/airliners revenue—producing costs,

including advcrtieing and non~maintenance personnel expenses, are excluded
“From Cx(t) ’

Withbut loss' of generality we may suppose that 'x(t) is tbe sﬁm-of
‘an. absolurely continuous function (which represencs, i part the imputed

. cOst ot tailvrﬁ) and a discrete part (which includes thu ‘costs' of"

reriodic maintenance and renewal); recall the defini*ions given iz

Section 2, It follows that the cost func.ion C;(t) pnssesses a correa"

iponding cost density (generalized) function cea(t) (recall eo." (2 30.

and the related discussion of the density associated with & dascrete
distribution). Then

, t ' ,
Cy (€ -_f e (e)de . ‘ N (6.4)
0 _

" If )\ never fails, then C,(t) essentially reduces to enevcost of
Hard Time and On Cordition maintenance tbrough time ¢, 3nd can be
appfoximsted bv a step function. If the probability of failure is not
zero, then it will be more useful to express tne maintenance/fallure cost
Cy(t) 1in terms of the failure distribution Fx(ﬁ) If A is maintained
in 'gctordancu with a Hard Time policy without inspectjoq, then the
associated venewal cost density will te proportional to the number’ of
items which gurvive until che rﬂplacement time. If that time is tk,
then the corxespanding cost denéity is proportional to §(t - tk)il(t),
wheze - §(t - ty) 1e the Dirac delta function (cp. Eq. (2.27)).. "X
is maintsined in accordance with an On Condition poli:y, then costs-will
be incurred at every inspection. If ipspection times are t31, t2,:..,

ti’f“’ then the cost density will be oi'the form

o gc';’i(e).é(téti)R}‘(t) N (38
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 ncr& cA .(t) dend.ns’the bos;\pf maintenance of X+ at. time ti.
Finaily, it A is maintaAned Jn accordanee WiLh ‘a Coudit#on Monitorinz

process, or if 'A actually faj a, tﬁen the hoxrespondigg ‘cost depsity
.i' v Pl

will be proportional tv Lhe fuxluru denqiry ol\t) = T I¢ follows |
that the general cost density has the form ”5“.' -
v}ﬁ"fﬂf” ' cx(t) qtci(t) P, (t) 4-}E:c (t) 5(t t ) LN (t) . (6.6)

i , . T e RS

The {mputel costs af failure are reptesented by cf(f)? >£q. (6.6) shoﬂs i

that faiZure cost density 18" proportional to the failure density and
‘ thav other maintenante costs Are ptoportionai to the durvival distribution.
In order to make these expressions compatable, we will express the
survlval dierihution in terms of the hazard rate and the failure density.
From eq. ‘*.14) we have Rx(t) - px(t)/“x(t) 80

S () 6(t-t )
) A i
o . ' cx(t) = { (t)-+ 2 : A(t) }px(t)

= def YA(C) px(t)

(6.7)

where we have written

i

- : (t) 5(t - ) , R
¥ (e) = ek ie) +§; WL ENG) K S

If thgbfrequenqv of inspeptions is larxge conpared with the frequency

of failufés, thenvthe delta functionp caﬁ:bé approximated by linear , ‘
1nterpolatioa Thmq amounts to tbe assumpLion that 1nspection costs are

;fﬁ.expended un1£orm1y with time rather than at a discrete set of times.

The functions ' ( ). aad u? J(t) are'costs, hence positive
vl

functions."This fac: wi?l be usea iit what follows.

_ The total maintanance/fa*lure cost of the system § as a function ‘
of time will be '

i C(r) . E €, (8) = E INOL NN (6.8)
RS T S Y o T B
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i the 1att¢. is not alteaay & local wivimum.
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vhere we have written dFy(t) 1in place of pp(t)dt. As we have already -’

“réméQkad abové, Lhe main ohjective of thé Reliability-Centered Maintenance
. Progreq is cp minimize ‘the value of c(t) for each time t, -given the
'nistcry vf the system for times t' < t. |
'{¢,§&¢ The problem of minimizing c(t) 1is still too complicated to admit

-0 marhenwtical golution even if all the quantities involved were precisely
_ knduu. Yevetcheless a. simple observation provides the key for implemen-

ﬁation of a systematic iterative pro»edufe which acts to redace c(t)

!

SLuce i ts a nﬂximally 1ﬂdepenﬂent purt]tio:, it wili not be

-possible to reduce () oy passage 1.0 a refifement Bd fbr which the
'survival distrihuriony Ru\t), it € M, are indepeadent. This mesng that
"C{¢) need ot be *re g]oba;ly miadnal mainterance/failure cost for the

system even fhough It may be minimal Yor the collectien of ali maximally
fndependers. partf“ions. Furchermore, the local rinfmum (subjert to the
uonatrainr 08 maximal 1ndapendence ot the parLition, depends on the choice
of pavtitionm, ,“hevr is no guaraﬁtee thut minimization of c(t) for tme
giv;n maximally indapeﬂdent partition A 1is the sume as minimization of
¢(t) over the lass of all maximally independ¢nt partit;ons of the syatem

. Thus we must again concJude that the miniuum which ‘will be attained by

the procedura a2bout to be deacribed hence 2lso the minimum attained by,
the Reliabiliity-Centered Maintenance Program, s not necesaarlly gicbal.
Nevertheiass, experieuce sug;ests that the minimum achieved in the
application of tke Program toe uommcrcia1 airline ‘operaticns may ‘oe ¢lose
to the global minimum and, i{n any event, partial minimizatiun nE C(t)~ '
by upplication of the policies introduced bolow leads to significant 1

reLuctions in the value of - C(t) in practical cituatisng,

Returning now to eq. (6. 8), observe that g\(t) A'G. ‘¥hen Clt)

i

18 & Yinite sux (over the elements of rhe p&x*‘,*on A) of inuegralr
. VAR S ﬂ~:.,r
o () ey (e)ar
v!fb..x ;3A A

' \ PR . i
B . ¢ ’ Sy B R NI
LN ;

U,yhose'igtegrangq_gygf§rodﬁ¢£s,of,nonrnegative functions. Consequently,
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the total cost C(;) through time t will be'teduéed['if one or more
1§£Jthewfollowing,fhree possibilities occurs:

3
E i I. For some AeA there is'a maintenance policy which :
; replaces the failure cost density cf(t) by a failure {

cost density cf(t)* .such that

. - . /’l‘. . ':J
: _ : Cf(t)* < ci(t) for all t and i ,

ci(t)* < ci(t) .for t 4in some open interval.

AR T

iI, For some A €A there is a maintenance policy which 1

T

replaces the maintenance cost function c? i(t:) by a ‘ 1
]

maintenance cost function c? i(t)* such that
9

m m
: * <
ckgi(t) < cA,i(t) for all t and

T, TR RS AT TR

S L(ey* < ¢ (t) for t in some open interval.
A, i 2,1

. I11. For some X€A there is a maintenance policy which replaces
the product yk(t) px(t) by a product Y;(t) p;(t) such : 3

that ' : - i

* * < ,

Yk(t) p)‘(t) < YA(t) px(t) for all t and

Y;(t) p;(t)'< Yk(t) px(t) for t 1in some open interval, i
and neither * nor II 1s applicable. |
Maintenance policies of Type I occur when an item is redesignec to
* {ncorporate redundancy or other fail-safe design methods which act to

refice the cost of failure of the initial item without necessarily
sffecting its probability of failure. This type of policy change tends

Btk mands v b it Su s mre e ki e

to apply to modifications of equipment design rather than to modifications

of operational maintenance procedures.

Type II policies arxe indifferent to survival distributions and ‘
therefore are really independent of the properties of the equipment beiag :
maintained. They are principally managerial or organizational policies i
concorned with matters such as scheduling of périodic maintenance tasks,
location of depots, provision of replacement parts in adequate number to ) §
.:edﬁ¢e7duwntime revefiue 10ss while avoiding costs associated with g

70 ' ' :
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excessive replacement parts stock, and so forth. Optimal Type Tl policies
_ can be difficult to identify and implement, but their nature and importance

have always been understood by managers and cost accountants. 'Nevéfthcleoo,
the large costs of critical failures cammot, in typical situatioas, be:
counterbalanced by efficiencies from Type II decisions, that‘is,>wiﬁh6ut

~modification of the survival distribution or the cost of failure.

The most siénificant opportunities fqt the 1ntroductioﬁ of mniﬂte-
nance policies which reduce C(t) are of Type III, which can be further
categorized into three subtypes. Using the notations and constraints

given in III, they can be expressed as follows:
IIIA. Y;(t) Z'YA(t) and p;(t) > pk(t) for all t;
II1B., y;fqa ﬁ“YX(t) and p;(t) 2 px(t) for all t;
IIIC. Neither of the above.

For either of the first two conditions there will be some open

interval on which strict ineqdality obtains becéuse of the condition
* *
Y, () o, (8) < v, () p, (t)

in ITI. It is poséible that there will be some intervals where
p;(t) < px(t) and others where p;(t) > px(t) compatible with III;

these cases are subsumed under IIIC.

In circumstances where IITIA is applicable the reduction in the
probability of failure density may result in an increase in maintenance
costs. Nevertheless, if a failure of the item in question is critical
with a corresponding large cost of failure density cg(t), then the
product Y,(t) P,(t) will generally be reduced, often by a substantial

amount. Maintenance policies of this type correspond to situations

" where a judicious additional investment in an appropriate maintenance

action results in a significant decrease in the failure density for items
which are associated with large failure costs. Essentiallfor the effective
" introduction of Type IIIA maintenance policies is an evaluation of

failure modes and the consequences of failure. Based upon such infor-

" mation, maintenance policies of Type IIIA can act to reduce C(t) by

s/
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,_int:oducing.e redefinition of an unsatisfactory condition (cp. the dis-
cussion'in,ChaptetHS)--that is, a failure—-in orderdto convert functicnal
. fQiio;eeggespecially critical failures) into non-functional failures.

'This conversion will ncrmally be accomplished by introducing instrumen-
tation or various inspection and monitoring activities, each of which

adds to maintenance cost, but.the increase in meiﬁtenance_cost is offset

gby the reduction in the expected cost of failure.

, Policies of Type IIIB are particularly effective when applied to
non-significant items (cp. the discussions of significant items and
Condition Monitoring maintenance in Chapter 8). They decrease yk(t)
while possibly increasing the faiiure density pl(t) in a manner which
decreases the product of these two functions. If the failures of an
item are not significant, then there generally is no”oompélling Teason
to implement either a Hard Time or an On Condition maintenance policy.
By piacing such items in the Condition Monitoring category, Type. TIIB
cost reductions can be obtained In effect, this means that the failure.
cost density cx(t) reduces to the cost of replacing the failed item.

If this is less than the cost of maintenance over the lifetime of the
item, then the cost density product is reduced by implementing this
policy. For example, a maintenance policy which periodically dismantled
and renewed seat reclinets would' be relatively costly compared with the
imputed cost of a recliner failure. Consequently, although the failure
density might be increased thereby, a revised policy which merely
monitored the condition of the recliners by establishing a mechanism to
report users' complaints would certainly reduce Ck(t)' and- thus C(t)

itself. It is of particular importance to seek those elements of the

partition for which scheduled maintenance policies result in greater

" values of C)(t)  than would Condition Monitoring, (i.e., surveillance)

policies either because maintenance processes do not reduce the fallure
density (e.g., if the assoclated hazard rate is non-increasing) or

~because the cost of reduction by maintenance is greater than the imputed

added cost of féilure through lack of sclieduled maintenance. The
Decisjon Diagram,technigue of the Reliability-Centered Maintenance

72
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Program provides an exblicit means for identification of partition’
elements to which Type III B policies can be applied. '

R T T —

It may happen that application of policiéé I - II1 decreases C(t)
Sut that the new cost function is not minimal. Less expensive con-

§ versions of functional to non-functional failures, longer inspection

e 155

intervals and Hard Time renewal intervals may be recognized as beneficial 3
X " at some Subéeqhént time. New information may become available as a
result of experience or testing or theoretical advances. Equipment'will- 3
_generally evolve, and constituent items will be replaced by others with

different (but not always more favorable) reliability characteristics.

Rt L L R ep—

Each of these occurrences may provide a cost-effective reason to apply
the policies I - III again, thereby bringing the maintenance/failure cost -

function closer to a local minimum. The history of the iterated

SRR N IT IR PP}

appiication of maintenance poiicies of Types I to III will typically,’ . Ll

when conceived as one grand maintenance policy, be of Type IIIC: neither _ j

the cost densities nor the failure densities exhibit monotone decreasing f ' *

behavior as time increases, but the policy nevertheless achieves an

i ebima e ad e ot

overall cost reduction at each stageiof the iteration.
. r

e

W T e T

\ .
A simple geometric interpretation of this procedure can be readily T
3 visualized. ‘der the maintenance/failure cost function C(t) as a A

function of . .rious parameters which determine a maintenance policy.

ek,

These would include Hard Time replacement intervals, the reliability

distributions of the parts, and so forth. As a function of these variables
and for each time t the maintenance/failure cost function determines a .
hypersurface in a multidimensional euclidean space. This surface has

the property that the total cost function is positive for each time t.

SEPRNE SUPIE VRO TP O VPE SIS SUMIRSTIOS

The maintenance policy designer seeks a curve on this surface which
depends on t such that for each fixed value of t, the curve passes

through the minimum poiﬁt on the hypersurface corresponding toéthat time.

E
[
b

In more picturesque language, the desired maintenance policy is represented %
by a curve which passes through the lowest points of the deepest valley °
of the cost hypersurface. The policies I - IlI are valley-seeking; with

each application, they direct the curve further downward into a valley.
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Although there is no assurance that the valley into which they direct
the policy is the lowest of all, the Reliability-Centered Mq;ntehance-*

Program does ensure thar the maintenance policy seleqted gravicates ever ,

e e e e mammememtem e B e

closer to the local valley floor.
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7 INFORMATION AND MAINTENANCE PROGRAMS L

23, Ciitical failures of large-scalc complex systems are generally ;

TN TR

extremely costly; consequently, a maintenance poliey which attempts to
minimize total costs must also attempt to minimize the number of critical

R R

failures. Thus, an effective maintenance program will of necessity be

e

reliability-centered. The more effective the program is, the fewer 4
; critical failures will occur, and correspondingly less information agbout

operational failures will be available to the maintenance policy designer.
It is in this sense that the objective of the maintenance policy designer

i

can be thought of as an attempt to minimize information, and that the most

niad,

successful policy yields no information whatsnever about critical failures

because it precludes their occurrence. That the optimal policy must be !

designed in the absence of critical failure information, utilizing only

the results of component_tests and prior experience with related but ;

R R T s R

"different complex systems, is an apparently paradoxicél situation. More-.

AP PP IR - PRI

over, the applicability of statistical theories of reliability to the
very small populations of large-scale complex-systems typically encountered

% in practice is questionable and calls for some discussion. Each of these

PP

distinct viewpoints leads to the conclusion that maintenance policy design
is necessarily conducted with extremely limited information of dubious . i
reproducibility, and we must consider why it is nevertheless possible, . 5 ;

and how it can be done. The following two subsections take up these ques- 3

T

M

tions in turn. . :

i ‘ .
7.2 Recall the geometric interpretation of the Reliability-Centered {

Maintenance Program given at the end of Section 6. For each fixed time ;

3 t the maintenance/failure cost functicn can be considered as a function :

é of the various parameters whose selection specifies a maintenance policy.
E This function defines a hypersurface in some multi-dimensional euclidean

EVY LTI

space. Since costs are necessarily nbn—negative. the cost function will

attain its minimum value at some point(s) of the surface; we may say that
“ such a point is the lowest point of a valley on the surface. The
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. mum, i.e., a lowest vailey point, on St. Combining these as t varies,

Reliability-Cent Maintenance Program is designed to seek the lowest
point in some valley on the surface, for each time ¢t.

Denote the sur.ace assoclated with time ¢t by St. _1f the varia-
tion of t 4s identified with a variable point on a line, then the

individual surfaces Sc can be stacked one next to other to form a set

S = {s:‘o <t <=} H (7.1)

S need not be a smooth surface itself because discontinuous modifica-
tions of equipment may introduce discontinuities in § as t incéeases.
For the sake of discussion, let us assume that S itself is a surface
(of dimension 1 greater than the dimension of each St)' The optimal

maintenance policy at time t 1is one which corresponds to a local mini-

one obtains a lowest valléy point on St for each t. These points

need not trace out a curve on S because changes of maintenance policy
can correspond to a "jump" from the lowest point in one valley on S,

to the lowest point in some other valley on Sn' Nevertheless, it is
impossible to implement more than a finite number of policy changes in a
finite time interval, so that an optimal Reliability-Centefea Maintenance
Program corresponds to a finite number of ciurves lying on S, each of the
form t +f(t), with f£(t) a point in S, which is the lowest point in |
s¢me valley on St. Thus, as t 1increases, the point f(t) which cor-
regsponds to a solution of the maintenance problem traces out a curve
which runs along the floor of a valley in S possibly ‘jumping, from . !

time to time, from one valley to another. ‘ . o

The mathematical problem which corresponds to thils description con-

sists of locating the minima of St as t varies, If the equation

which defines S 1s known, then this probiem can in principle be solved
by applying the methods of advanced calculus. In practiﬁe, were the
defining equation known; fhe number of independent variables entering
into it would be so great as to preclude an explicit analytical éolution

of the problem. In any event, for reasons already cited and discussed
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1{ in detail throughout [6], the defining equation can not be xnown because :
‘ the available information is insufficient. o : 3

The defining equation of 8 containg all possible relevant informa- ]
~ tion about the consequences of all conceivable maintenance policies.
> This is surely much more information than is actually needed either to ]

"'specify a locally minimal (valley floor) curve or even to locate one.

3“osed, if p denotes a point of S and if any downward direction at 1

TR yEmERT TR e T

\ p& is known, i.e., a directicn for which the directional derivative at

\p \13 negative, then a small displacement from p along the surface in

tmdt downward direction lea§s to a nearby point, say q, for which the

ot "l

maxntenénce/failure cost is strictly less than the muintenance/failure
i

cosi corresponding to p. Obsgerve that this procedure merely requires

a1+ hmime 2 L2

info?mation about the cost benefits of policies which differ little from

adtdd

the policy corresponding to p: we may say that this procedure only
requires information about policies in a small neighborhood of the policy

P. Such information is the most likely to be available, or estimablé. in

practice. Moreover, this procedure does not even require full information

TOE TR AT AT TeeTR R e T T AT T e e

TN SRS

about all policies in a small neighborhood of p; it suffices to know one

PP

direction which leads to cost reduction. In this sense, we may construe
the Reliabllity-Centersd Maintenance Program as a well-defined procedure
for identifying directions on S which tend downward, i.e., reduce

maintenance/failure cost.

The ;apidity with which the floor of the valley is reached ﬁy this
process depends on the size of the step taken in the downward direction. !
If the step size is smaller than necessary, it will take more stéps to
reach the valley floor, so that greater than necessary maintenanée/failure
costs will be borne: unnecessary maintenance activities will have been:

supported, avoidable failures will have been experienced. If the step

PR %

size is too'large, then the maintenance policy may leap from one!valley

wall to another, unable to detect the floor; and producing an oskillating

S

policy which can, in unfavorable circumstances, produce successively

gfeater maintenance/failure costs and ultimately oscillate among lccal

B a2t Lo et

maximg The choice of step size is critical, as has been implicitly

recognized in the conservative federal guidelines concerning, extension of

PR

77
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Hard Time replacement intervals in commercial airline maintenance policies. .
It i8 rlearly preferable to select a step size smaller than optimal - ;

instead of one larger than optimal becagse the consequences of the former %
vary continuously with step size whereas small changes in the latter can
produce large and unanticipated cost increases. It must also be recog-
nized that the size of the optimal step depends on its location on the
surface S, or, to put it more picturesquely, it depends on how "wrinkled"
the surface is in the neighborhood of the point from which the step is

taken. If the surface slobes gradually and gently downward toward the

valley floor, then a larger step will be admissible than is the case when
the step-off point lies at the top of a steep cliff overlooking the valley. ° 1
Determination of the optimal step size is a wore difficult problem than

T T g T s 7 T £

is determination of a direction in which the step should be taken because '
the former implicitly requires some estimate of the magnitude of the
directional derivative whereas the latter mereiy utilizes the sign of that

derivative. Suppose that there is reason to believe that the absolute
value of the directional derivative is bounded by a known constant on the

entire surface S. This information enables one to establish a maximum

T ST s A T R T T AT Y

step siﬁe such that maintenance/failure cost increases as the result of %
over-stepping are held below some prearranged value. Hypotheses about
' the maximum absolute value of directional derivatives can be based upon
prior experience; relative to a maximum step size determined this way,
the assertion of some reliability engineers that '"there are no cliffs" in :
hazard functions and other reliability measures is given a precise mathe- é

matical interpretation. %

In summary, although the maintenance policy designer has little
information at his disposal regarding the precise nature of the mainte-
nance/failure cost surface, creation of an iterative minimum-seeking

policy only requires enough informatioﬁ to identify downward-tending

directions in the neighborhood of an existing policy, and to establish

an upper bound for step size in order to avoid overstepping.

L3 It is generally impossible to adequately test most large-scale
complex systems because so few replicas are built and the time needed to
test one system at the desired confidence level often approximates the

78
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- expected lifetim~ of the system. ty 1 ptior to obsolescence “éimpie l
'ovs,stems are alsJ subject to the Jqute& proolem if high reliability ‘a .
. demanded and eecbnology is. rapidly var,ing © For instance,’ MIL—STD—690A,
"1, fe Test Qanpling Proredures for Established Levels of ' Relinbility and
Confidence iG Electronic Part. Specifications," proposed 'in 1965, reouired
zero teat failures in 230 millicn part ours to meet a standard of 0. 0012

'L”failures ver Lhousand hours at the 907 confidence level. Testing as

nany as 1C 000 parus simulfaneously would require k.5 years- of testing

24 ' :urs perxr day . But recent electrovic technology has heen consistently ' 3

undergoing major fevojutions at, intervals ot appxoximately 5 years. We

+

must conclude that a product which has been adequately texsced according ; 1
to éonventlonal staneards may be obsolate by the time it satisfies the o

'testing criteria. Thus, oomplexity of equipment and high performance - 3
requirements consﬁire'to eliminate the pussibility of observing the :

ufvival cnar&dteriatics of svstem repiicas‘in sufficient quantity for

snat1stinal analvcl. of sample vaxiation to be a leuable guide.

Alehongh if 8 ccmmon to view seatistlcs as an anal"tical arsenal

for the deecrtot;or of ohserved var;ations in large samp ‘es of homologous

o AP S it ] o

S NS _njertvd to similar environmental stresse , there I3 another, more
profonnd vie introdaced fnto statisfica; mechaifics by J. Willard Cibbs.
Frior %o Gikbs, tle appllcatlon of statistical methods to the study hf

hysicsl reality was beset with pnilosdphical problems arising from the

i Lrefutab;e observac1on that there iskbut one universe, not a s e of

universes the variation of whose pFoperties statistics would describe.

e il e Bt 8Kl

: It was ibbs who conceived the fruitful notion of a virtual ensemble of

ootential universes upon which statistical analysis acted to select one

[T

— the one that exists — as a kind of golution to,a variational problem, . %

the problem of maximizing expectation. In this way statistics is applied

BTN U U RN

as a cardinal ~uinciple in our model of nature, on somewhat the same
' |

footing as '.ewton's Laws, to determine which among the conceivable

S 5

universes shall occur; it is not a descriptive tool to provide a measure

of chserved variation. Elevated to a principle, statistics nevertheless

Wl
<Y

oannot detctmine the course cf nature wifhouc uﬁditional information,
; " just as application of Newton's Laws requirus knowledge of the appropriate

< force funct;ou. . . : g - i
79 |
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The statistics of traditional reliability theory has few points of
contact with the Gibbsian interpretation; it is éeven together with
product sampling and age exploration. When these are not possible, when
the system ie complex, unreplicated, and rapidly becomes obsolete; then
application of statistics as a means for the analysis of veriation must

yield to the Gibbsian role of statistics as a selection princible.

These remarks neither solve any problem of reliability nor yield
profound ineigﬁts. But they perbaps suggest a philosophical foundation
upon which an acceptable theory ‘of the application of statistics to the

reliability of complex systems can be developed.
: o | .
7.4 Recalling the ideas and notations of Section 7.2, we recognize that

the step size used in implementing the Reliability-{lentered Maintenance
Program depends on the policy selected and also on ﬁhe time of selection
of the policy. A point on the ﬁaintenance/failure cost surface St' cor~
responding to time t is specified by the policy parameters, which will
be collectively denoted by p(t), and the corresponding cost, say

C(t, p(t)). Thus the corresponding point/on 'S has coordinates -
(p(t), C(t,p(t)); -and, when it is consideted as a point ?n the full policy
surface S, its courdinates are (t,p(t), C(t,p(t))) with\time @s an |
explicit variable., Selection of a step is'the sanpkthing as selection of
a pair of points on S, say (t',p'(t"), C(t',p'(t))) and

(t",p"(t*), (", p" (")), The time variable plays its usual distindtive
‘role since it is subjen* to unicursal variation: tiwme always increases.
This implies that of two applications of the minimizing maintenance
policies (I) — (1II) of Section 6, one will always be antecedent to the
other; we can suppose, without loss of generality,_that t'< t". It may"
happen the policy p remains unchanged from t¢' untii t": that is, a
teview‘qf poliry may not bring forth sufficient reasons to implement a
policy change. The process of review, and the process of implementation

of a policy change, may be costly, which is an inducement to extend the

interval t"—t' .between successive reviews or changes as much as possible.

Councerbalancing this argument is the possibility that a review will lead

to a substantial cost decrease, i.e., that there will be sufficient
information to enable the size and direction of the next step ‘in the
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i - iterative minimization procedure to be determined. ?dt’*h;g; teasona ‘>
'the'pfyblem of determining the step size in the fime varissie, that is,
of determining the interval t"=t betwcen successive applications of
the policies (I) — (III) to the system, assumes a particularly signifi-

IR R TR T TR TR

cant role. An intensively studied speclal case of this problem is con— A
cerned with the extension of Hard Time replacement intervals for equip- ' 3

ment as experience accumulates.

Determination of the optimal intervals for application of the

s

Reliability-Centered Maintenance Program policies appears to be a particu-
larly difficult problem, depending as it does on both the conversion of

TTATRRETSIRT AT Ny O PR T T L e e T T

(PR TR

operating experience into information about the survival distributions
of the elements of the parti. ion of the system, and on the effect thié 1
§ information should or would have on those who bear the responsibiltiy for '

: makirg policy changes such as increasing replacement o. insjection inter-

- vals. We have already noted that larger than optimal step sizes can
: lead to wild oscillations in maintenance/failure costs and to an increas-
ing number of critical failures, whereas smaller than optimal step sizes,

which can also be called conservative estimates, merely'reduce the. rate

of approach to the optimal policy. This is a persuasive argument for a’
E y conservatibe implementation of a maintenance program. Excessive con-

servat sm,\however, is often too costly and retards the evola lon oF “' : {

e, 3000, R E T vt i S e M oo A A A e, . i B P L e

related syStems. It is thereFore worthwhile to try to form\:.l.ate the g é

de ision p*ocess in a manner nhich makes it subject to analysis.

One way to formalize thk problem of interval determinatfﬂn is basec

upon its connection with informa ion theory. Let tl,tz....,t:n be a

sequence of inspection or replacement times for samples of a type of :
%;eP. Let R(t) be tne oteerved survival distribution and U the

oot Galiatieeh s SCIapban gl L Cn e S i

‘dﬁiﬁersé of sample items. If £eU 1is an item, it will age and finally
fall at some time t(£). Let '

| w(ti) = {f: ¢t < t(g) < ti} y 1=1,...,n, with t =0 (7.2)

H
2
3
4
1
)
N

i-1 0
é that ig, let w(t ) denote tlie set of items which fail before the 1th
ﬁ inspection but not before the (1-1) inspection. The sets
81
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{w(t,): i=1,2,...,ﬁ} = constitute a partition of U. The probability
. i . = ;

that Eew(t,) “is R(t, ;) - R(ti). The informati&h associated with the
partition is (cp.[2] [11]) ' S

N

1(Q) = '-,Z'(R(ti_l) - R(_ti)) 1oge(R(ci'_1) -‘R(ti)> . (7.3)
i ’ R .

Passing-to continuous variables, thisbcorresponds tdl(cp»[ll])

i

1(Q) = -5[ . 'p(t‘.)loge p(r)dt . o - (7.4)
0 . '.‘ . . .

Note that the information defined by ea. (7.4): depends on the coordinate
system; it is not independent »f :ransformat{ons of the'time variab}e,

amohg which selection of zero time is includéd. In particular, the

information corresponding to a continuous sdrvival probébility density -

may be negative. Information differznces do have absolute meaning,'

independent of coordinate trarsformations.’

It can be s@own,that, among alli differentiable survival probability
densitites Mhich?have the same mean timc before failure T,

H
]

the exponential surviValtdiStribution; for which

p(t) = % exp ( - t/1) ; o o : (7.6)

maximizes the information eq. (7.4). A simple calculation show§ thatlin‘

this case

1=1+log, T. B | (1.

PR
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; ' The information corresponding to the expcaertial diatribution and ! ff
3 _‘inspection 1ntervals of equal duration cap be easily calculated. ‘Lét the. . K.
: lnspget;on times be . i
t, 7 T, d=0,1,... o (7.8
where T “denotes the mean time before failure and 4y 1s a poeitive‘ f

constant. The inspection intérvals have common duration ti i'" t = qT. ;

and the survival distribution is given by eq. (7.6). From the formnlae E

. ) - ) ¥

= xi . X ;

1-x 1

i=] E

o oo 2

and 1.xi = ____x_z. , f[ F

A=t (1-x) %

. . . '} ,é

each valid for -1 < x < 1, we find, from eq. (7.3): i ?

'Io= I(q) = _E (e-iq _ e-,(1+1)q) iog@ (g-—'iq‘_ é-‘-(vi+1)\qf) (7.9)

3 | RS - i %
* i - (1-e q). Z qie ia _ 10‘1 (1-e q) 2 ‘k )
1 - st i1 _ . ;

b ) ‘ | é

a3 o -e-q_ioge(‘l - e-q) .

eq—l B i . o o , . . é 3
. _ ‘ , o ‘ ;
. As the Lnspect4on interval tends to zero, the discrete fermula eq. (7 3).

does not pass ‘over to formula eq. (7. &y corresponding to the idformati&h. ]

aBSOCiated with an absolu;ely continuous distribiition, so one should ~ %

not expect that Iim 1(q) w111 reducé to eq. (7.7); instead we find' .

. ' q+o ' ) . oY LA I
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.there are no inspections, which is equivalent to the condition that q

I1(0) = 1in I(q) = = (7.10)

q+o

ol
*

periodic inspection with zero interinspection interval ﬁroduces infinite
information for the exponential distribution. At the other extreme, if

18 infinite, then _ , ‘ "

I(=) = 1im I(q) = O : ' (7.11)
q.-b- [ )

the information gain is zero. These calculations agree with}ourfintuitive

assessment of the situation.

I(q) decreases from infinity to zero as the interinspection interval
increases from zero (continuous inspection) to infinity (no inspection).

For inspection intervals equal to T we find

1
1 . N + :
I(1) = 7 - < log (1 =) = 0.750 - (7.12)

1
Our oﬁjective is to determine inspection intervals so that there is
some desired relationship between them ard the corresponding measure of

infornnt'on. . -
' : (.

? s,e 1nsp‘action""‘:i'rf 8 tl,tz,...,\n 1 i}e given an@%fiet it be .
\ ) -
teqﬁt “, to determine t . YMoreover, consider further ingpection times

n+k’ k=1,2,..., corresponding to equal inspection intervals |

-t

n-H( = qT, k’l,z,..o ; , (7013)

tn'i-k+1
we willwﬁqter:lgt q apprcach infinity, and it wiil follow from the _
calqulaﬁions ptevioﬁsly given that the information corresponding to the
latﬁér intervals will be zero. The information corresponding to the

partition induced by Lt it } is

\

2,...

ZP log P, ‘ ' _ (7;],4_5
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3 ; vhere we have abbreviated ' %
:

i ' if the-desired relationship among the intervals is that each inspec- \
tion interval produces the same amount of information, then the condition

e ol S s A

is

PilogeP1 = const, = PllogeP1

R Latuce S UL TR
~

for all "i. If .the survival distribution is exponential and the first ‘

% inspection time is t;» then t, is determined by the eqﬂati‘m : ' j
z o _ _:
: -t./T -t /T . %
5 : (1 -e ! )loge(l et ) = (7.17) i
~t /T -t /T ~t /T -t [T\ _ .

(e T2 )loge (e 1" 2 - . : :

Thisvis equivalent to an eqﬁation of the form

TR 1 TERRT S QT PR S ST g e
e i

QIR - PR LTI T S R I

(1- e-x)loge(l - e *) = const. , (7.18)

bz ar it

where x=(t,- )/T, and can be solved by numerical methods. o ]

TR

The left slde of eq. (7.17) is known from observations oBteined

L e

3 through time £, By monitoring R(t) throughoui the interval \tj '
-gne can always calculate when the incremental 1nformamion satisfihs- ‘{'

“eq. (7.16), which dstablishes t, and the succéssive intervals. ™ b

b Sl s ¢

Sk o
-

; "ggln.gpnerpl;k§f th;tg 1& 1n£an; yortaiigy. thqn ;z—tl > tl;nit will

_ take longer to acquire additional information ﬂb@ut the-aurvival distribu-
: ‘ tion after the epoch of infant mortaliiy,has been out}ived. Simil‘rly,

‘ should a wear-out period exist for aged_iﬁems, ingpection interyali

PRENRE VI

it

{ ‘ established by the principle of equal\information will be cpmparatively i
4 % shortened to compensate for the increased hazard rate. Howaier. the i
: % reduction may have a negligible pract@gal effect because there may be too é

few iﬁems‘aurviving until advanced agés to significantly affect total
_fleet maintenance cost. This 18 1p>§gcord with experiance.

[ .
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""The policy .outlined above reaponds to_failure; cp. Chaptev 6

As items in the initial inventory ‘ail, they may be renewed lnd
, returned to service, or replaced by new items of the same type, Additions
to the operational inventory of items may also be made at various times
and in varying quantities. As a consequence, the oldest items in opera-

tion are likely to constitute only a small fraction of the "fleet" even
if the failure rate is low.’ '

Additions to the operational inventory and renewal of failed equip- ?

ment creates complex, unpredictable, and'continually'veréing age distribu-

tions. Figure 7.1 illustrates an age distribution, with each. renewed :
item returned to service treated as distinct from all others, including |
its pre-failure form. t 1s a measure of operetional time and tChron
denotes chronological time. The total operating time untilifailure of
item 1 is denoted by 'ti In this figure, item No. 4 migh: be a
renewed version of the failed item No. 3; No. 5 1s a non-initial

IR TY PIE PR, . oL TR UL SRR P T

acquisition which has not failed during the span of chronological ‘time
displayed in the figure.

ik o i o S0r. 2l S0t e

item No. Chronological Time tchron
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" Figure 7.1. An Age Distribution - Chronological Display ' %
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. .- 1f the information provided in thqufigufhgil'displayed\&n‘tifl.-cf
; operating time  t, then it cah be arranged as shown in Pigure 7.2.'"
k. L o .. ¥ . L

item No. A Opoutioml Time t

7//////////////////////////7/////’7//7////////////////////7//// M.
BN 2
é’////////////////////////////////////////////////////ﬁwm
AR
M,
MMM

Not Falled

W = b ON O

b bt ME

E Figure 7.2.  An Age Distribution -~ Operational Display ‘ ‘ 3

The survivai distribution R(t) can be estimated from this data :
for all t not greater than the operational age of the oldest item in o §

3 service. .If failﬂ& items are renewed and raturned to service, the sample
size for estimation of R(t) for small t will generally be significantly . ]
3 larger than the total inventory of items since given tenewed items share- : i

multiple operating histories. Since an estimate of R(t) is given hy the

fraction of items surviving until t, as experience accumulates, renawed

items are returned to the operating inventory, and new items are acquired,
.-the eatimates of R(t) for small .t can be repeatedly updated. As data
-accumulates the estinates of R(t) will stabilize; thus, rnpleniah-nnt ’

3
g
4




4
- k
amd expansion of the operating inventory only act to refine ths estimate 1
of R(t) and reduce its.varjance. - Since the failure information measure ;
1 of eq. (7.3) is completely detarmined by R(t) and the inspection :
intervals, it follows that the estimate of I is independent of replen-
ishment and expansion of the inventory except that as chronological time
passes, the estimates of I for small operafing times become increasingly - k
‘' relisble. | 5
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GLOSSARY OF NOTATIONS AND TERMINOLOGY

Notations

¢ ' Set membership symbol. For 'xe¢S' read 'x is an element

of S' or 'x belongs to S'. , 3

u, U - Set union symbol. SUT 1is the set whose elements belong to

at least one of S and T.

"""":“"q'w;' TH T e e Ty e e

n, N Set intersection symbol. SMNT is the set whose elements

belong to both S and T.

[ TS

Set difference symbol. S — T 1is the set whose elements

belong to S but not to T.

c Set inclusion symbol. SCT sgignifies that each element of

ST NI Wora

S 1is also an element of T.

9 Empty set.

1 Yx(t) ‘ Maintenance/failure cost density of element A of a parti-
tion A of system S with respect to the failure distribu- ‘ {

STTPORI PR

tion FA(t); eq. (6.7). '

e i

8(x) Dirac delta (generalized) function; eq. (2.27). i

n(t) Hazard rate, also called failure rate; eq. (3.14). §

‘ A Typical element of the partitfon A of system §; eq. (6.2). j
g . A ' Partition of a system 8; eq. (6.2) and Figure 6.2. j
1

" Typical element of the partition M of system §, where ? ’

M 1is a refinement of A; Figure 6.3. :

M Partition of a system § which refines another partition

A; Yigure 6.3, '

p(t)  Failure probability density; eqs. (3.8), (3.9).
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°A(t)

w(t)

ck(t)
ci(t)
C?,i(t)

cw(E)

c(t)
Cx(t)

F(t)

F, (t)
F(u(t))

1(q)

(@)
p(x)

Failuré probability density of element A of partition A
of system S; eq. (6.6).

Event in a measurable space; eq. (2.1).

Set of itews which have failed prior to time t; eqs. (3.1),
(7.2). '

Collection of events in a measurablé space; eq. (2.1).

Cost density with respect to time, corresponding to cost
function 'Cx(t) for partition element A; eqf\(6.4).

Imputed cost density of failure of partition element A
per unit hazard rate of A; eq. (6.6). ‘

Cost density of maintenance of partition elemant A cor-

responding to inspection time ;s eq. (6.5).
Indicat;r function of event w; eq. (2.7).-

Maintenance/failure cost function for the complex system

§; eqo (608). . ';

Maintenance/failure cost function for the element A of

_partition A of the complex system §; §6.3.

Distribution function for failure prior to time t; eq. (3.5).

Distribution function for failure of partition element A

prior to time t; §6.3.
Probability of failure prior to time ¢} eqs. (3.3), (3.5).

Information corresponding to an exponential surﬁival

d;atribution and inspection intervals of duration ﬁT with

T the mean time before failure; eq. (7.9).

Information corresponding to discrete partition Q; eq. (7.3).

-

Probabﬂlity density function corresponding to the prcbability

distribution P = pf

variable is usually suppressed from the notation; eq. (2.18){

1

of the random variable f. The random
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abs

p

dis

sin

P 8
4

B(wy|w)
R(t)

R (t)

Rk(t)

R(w(t))
R

]

i

v e+ Ay A ne A o . EITRESSEYE

Distribution function of a fixed random variable (not
indicated by the notation), relative tc the probability
measure P; eqs. (2.12), (2.13).

" Distribution function of random variable f relative to

the probability measure P; eq. (2.12).

Absolﬁtely continuous distribution funection; eq. (2.16).
Discrete distribution function; eq. (2.16),

Singular distribution function; eq. (2.16).

Probability measure; eq. (2.1).

Conditional probability of event w, given event w3
eq. (2.35).

Distribution function for survival until time t, also

known as the reliability; eq. (3.6).

Distribution function for survival of system § until time

t; eq. (6.3},

Distribution function for survival of partition element

A of S until time ¢t; eq. (6.3).

Probability of survival until time ¢t; eq. (3.2).

Set of real numbers.

Maintenance/failure cost surface; eq. (7.1).;
Maintenance/failure cost surface for timé t; eq. (?.1).
Set of items which constitute a complex system; eq. (6.2).

Mean time before failure; Figure (3.3), eq. (7.5).

Terminology

Bathtub curve - Typical shape of & hazzrd function graph; Figure 5.1.

Bayes' Principle of Inverse Probability - Figure 2.6, eq. (2.39).
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Condition Monitoring - Onc ¢f the three primary maintenance processes,
consisting of no scheduléd preventive maintenance. Cnndition
monitoring depends on the surveillance and inaliais program for
data collection and data analysis, upon which judgemeﬁts can be

made relative to miintaining items; see [6].

A S U

. Conditidnal probability - eq. (2.35). ’
‘Conditional probability of fgi}ure - aq. (3.12). | : ;
Distribution function - eq. (2.13).
Event - eq. (2.1).
Exponential survival distribation - 84.1

Failure probability density - eq. (3.8).

Failure rate - Same as nazard function; eq. (3.14).

Gamma survival distribution - §4.5.

Hard Time - One of the three primary maintenance processes, requiring
fixed-limit removal for vverhaul or time I4mits; see [7].

)

]
|
A
.

Hazard functior - Same as failura rate; eﬁ. (3.14).

Information -~ A measure of the organization of elements of a set associ-
ated with some partition. Modern Information Theory was developed
by Claudz Shannon in connection with communication systems during
‘the 1940s. Scon thereafter 1ts‘relation'to older ideas in statis-

e T W e

tical mechanica and statistics was recognized, and its fundamental
role throﬁghout the physical sciences was eldtiorated in numerous
articles and books, among which those by L. Brillouin and

E. Schroedinger ure partiéularly wdrthy of mgntion.‘ Heasures of

e S e s Gl AP e

information &re now systematically employed in fieids as diverse
as linguistics and psychophysics, biolcgy and physics, commmicu-
tion engineering and library science. Although originslly con-
ceived in the context of transmission of sequences of synbol~
dzawn £rom.a finite inventory with fixed proﬁabilities. :heAcon~

e 3

ISR

. cept of information is mo:- general and_can bé associated'with any
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partition of a finite set, and in certain instances with infinite
b sats os well. See [6], especially eqs. {(7.3) and (7. 4), and
: references (21, [11].

Independens rardom variables - §2.4, eq. (2.33).

A
E' Lebesque—Stieltjes integral - §2.3, eq. (2.22). See also f12] fcx a move

general and conprehensive developuent.
Likelihood ratio - eq. (2.39). ,

1

Lognormal survival distribution - §4.4. | u

Maximum-likelihocd method of estimation - eq. (2.40). |

Normal survival distridu=iwn - §4.2. ' ]

On Condition - One of the three primary maintenance prucesses, requiring ;

repetitive inspectioas or tests to determine reducad resistance

.

to failure for specific Yailure modes.

Probability density function - eq. (2.18).

3 Probabt11ty ot fatluve - §3. 1.

Probabxlity nf survival -~ eq- (3.2).

4
Ranaum variable - Paregraphs following wq. (2 3) and Figure 2.2. ' S }
Weibull survival distribution - §4.3. : o :
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