

ZenPower International Presentation.

TPM Implementation Blue-Print

www.tpmquality.com

By: Moses Tan (MSc, BIT), Principal TPM Consultant, ZenPower International

ZenPower International Introduction.

Who We Are:

ZenPower International was established in 1995 with its registered office in Singapore.

Our Vision.

To be the preferred regional provider of training, consultancy and sales services known for its integrity and excellence in business Quality, Reliability and Delivery.

Understanding and Using Autonomous Maintenance and OEE concept for Continuous Improvement in manufacturing

TPM-AM STANDARDS

Step #	Step Goal	Standards
Step 1	Restoration	=> 85% repair rate
Step 2	Eliminate Sources of Contamination	=> 70% successful effort
Step 3	Improve Equipment Accessibility	=> 70% successful effort
Step 4	Initial Maintenance Standards	> 50% sudden b/d reduction
Step 5	General Inspection Skills	> 90% sudden b/d reduction
Step 6	Autonomous Inspection	> 95% sudden b/d reduction
Step 7	Organise and manage workplace	TBD by management

Langkah-5 : Skil Pemeriksaan Am Step 5 : General Inspection skills)

(Step 5 : General Process Inspection)

<u>Langkah-6 : Pemeriksaan Autonomi</u> (Step-6 : Autonomous Inspection)

Inspection skill check p

Operators who understand their equipment (able to maintain inspection standards)

Finalise standards for cleaning and lubricat

= Availability * Performance Rate * Quality

Rate

= Maximum 100%

Under Actual Manufacturing conditions, some losses are inevitable. Hence the Best Practices have adopted 85% as a realistic monthly target.

Calculating Availability in OEE.

Availability & Utilization

- Losses due to unplanned downtime only.
- The unplanned events are Machine Breakdown and Setups.
- Small fluctuations.

- Losses due to the same reasons plus
- Planned downtime mainly due to 'no schedule' during poor business
 conditions or holidays, PM shuts

Calculating Performance Rate in OEE.

Equipment OEE Losses

Equipment Total Available time in 8 hr shift = 480 mins.

USEFULNESS OF OEE

- Provides a long-term baseline of equipment condition for improvement measurement.
- When an OEE analysis chart is plotted, the exact reasons in terms of the 6 Big Losses are clearly understood.
- Suitable tools can be used to address specific selected Losses.

IDENTIFY THE MAJOR LOSSES THROUGH THE OEE ANALYSIS

Before

OEE-Analysis Format

1-Month Summarized Data in Minutes				
1. Total available time	=	44640	min	
2. No schedule time	=	26870	min	
3. Planned downtime	=	3655	min	
3a. PM time	=	0	min	
3b. Meeting time	=	0	min	
3c. Housekeeping / TPM	=	3655	min	
4. Loading time = 1 - 2 - 3	=	14115	min	
	=	846900	sec	
5. Unplanned downtime	=	2941	min	
5a. Machine breakdown	=	2168	min	
5b. Engineering time	=	0	min	
5c. QC / QA time	=	193	min	
5d. P.Parts shortage	=	580	min	
5e. No material (Lot waiting)	=	0	min	
5f. Facility stoppages	=	0	min	
5g. Break time / No operator	=	0	min	
5h. Rework / Retest	=	0	min	
5i. Conv. / Setup	=	0	min	
6. Production time = 4 - 5	=	11174	min	
7. Total quantity processed (Actual O/P)	=	33877	frame	
8. TCT (theoretical cycle time)	=	109.86	sec	
8a. Theoretical possible $O/P = 4/8$	=	61671	frame	
9. MCT (machine cycle time)	=	128.32	sec	
9a. Currently possible O/P = 4/9	=	52799	frame	
Other remarks:				
10. Availability rate	=	79.16	%	
Performance rate	=	69.39	%	
Quality rate	=	99.80	%	
11. OEE	=	54.82	%	

Remarks: TSSOP 14 / 16 ld = 50 unit / frame.

IMPROVEMENT DONE CAN BE OBSERVED THROUGH THE OEE ANALYSIS

OEE-Analysis Format

	1-Month Summarized Data in Minutes				
1.	Total available time	=	44640	min	
2.	No schedule time	=	26870	min	
3.	Planned downtime	=	3655	min	
	3a. PM time	=	0	min	
	3b. Meeting time	=	0	min	
	3c. Housekeeping / TPM	=	3655	min	
4.	Loading time = $1 - 2 - 3$	=	14115	min	
		=	846900	sec	
5.	Unplanned downtime	=	2941	min	
	5a. Machine breakdown	=	2168	min	
	5b. Engineering time	=	0	min	
	5c. QC / QA time	=	193	min	
	5d. P.Parts shortage	=	580	min	
	5e. No material (Lot waiting)	=	0	min	
	5f. Facility stoppages	=	0	min	
	5g. Break time / No operator	=	0	min	
	5h. Rework / Retest	=	0	min	
	5i. Conv. / Setup	=	0	min	
6.	Production time = $4 - 5$	=	11174	min	
7.	Total quantity processed (Actual O/P)	=	(estimated)	frame	
8.	TCT (theoretical cycle time)	=	106.79	sec	
	8a. Theoretical possible $O/P = 4/8$	=	63444	frame	
9.	MCT (machine cycle time)	=	112.64	sec	
	9a. Currently possible O/P = 4/9	=	60149	frame	
0	ther remarks:				
10). Availability rate	=	79.16	%	
	Performance rate	=	81.63	% (etc	
	Quality rate	=	99.80	%	
1.		_	61 19	0/	
		=	04.40 (optime	/o	
			(estima	aleu)	

Remarks: TSSOP 14 / 16 ld = 50 unit / frame.

Various Examples Of Improving OEE.

Speed Improvement

> Achievement !! <</p>

No	Description	Improv	Delta (%)	
		Before	Before After	
1	тст	109.86	106.79	2.79%
2	МСТ	128.32	112.64	12.22%
3	UPH	2579	2905	12.64%
4	OEE	54.82%	64.48%	* 9.66%

Note: Item 1, 2 & 3 are calculated by IE department

* item 4 is base on no loss from lot-waiting

Example Of Improving Performance Rate through Improving the Equipment MTBA Losses.

Summary of "Static" Restoration Activities (1st Part]

- Six standards "static" conditions were checked and identified areas need to be restored.
- The index clamper and back rail gap were out of the required spec.
- Output index clamper position not parallel when a leadframe is clamped.
- One hot plate screw was missing.

'Before' and 'After' Restoration MTBA

* MTBA based only on Alignment Error stoppages.

Equipment Quality Rate Losses.

